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Abstract

Hydrological connectivity regulates the structure and function of Amazonian freshwater ecosystems and the provi-

sioning of services that sustain local populations. This connectivity is increasingly being disrupted by the construc-

tion of dams, mining, land-cover changes, and global climate change. This review analyzes these drivers of

degradation, evaluates their impacts on hydrological connectivity, and identifies policy deficiencies that hinder fresh-

water ecosystem protection. There are 154 large hydroelectric dams in operation today, and 21 dams under construc-

tion. The current trajectory of dam construction will leave only three free-flowing tributaries in the next few decades

if all 277 planned dams are completed. Land-cover changes driven by mining, dam and road construction, agriculture

and cattle ranching have already affected ~20% of the Basin and up to ~50% of riparian forests in some regions. Glo-

bal climate change will likely exacerbate these impacts by creating warmer and dryer conditions, with less predictable

rainfall and more extreme events (e.g., droughts and floods). The resulting hydrological alterations are rapidly

degrading freshwater ecosystems, both independently and via complex feedbacks and synergistic interactions. The

ecosystem impacts include biodiversity loss, warmer stream temperatures, stronger and more frequent floodplain

fires, and changes to biogeochemical cycles, transport of organic and inorganic materials, and freshwater community

structure and function. The impacts also include reductions in water quality, fish yields, and availability of water for

navigation, power generation, and human use. This degradation of Amazonian freshwater ecosystems cannot be

curbed presently because existing policies are inconsistent across the Basin, ignore cumulative effects, and overlook

the hydrological connectivity of freshwater ecosystems. Maintaining the integrity of these freshwater ecosystems

requires a basinwide research and policy framework to understand and manage hydrological connectivity across

multiple spatial scales and jurisdictional boundaries.
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Introduction

Freshwater ecosystems provide a range of key ecosys-

tem services. They regulate climate, support nutrient

cycling, transport water and materials, and maintain

water quality and natural communities (Millennium

Ecosystem Assessment, 2005). They also provide food,

energy, fiber, and water for human consumption, being

necessary for the survival and well-being of people

(Brauman et al., 2007).

The volume, timing, quality, and variability of water

flows play key roles in maintaining the integrity of

freshwater ecosystems because they control their

hydrological connectivity – defined as the ‘water-

mediated transport of matter, energy, and organisms

within and between elements of the hydrological cycle’

(Rosenberg et al., 2000; Pringle, 2001; Freeman et al.,

2007b). Disruptions of hydrological connectivity,

referred to here as hydrological alterations, can degrade

freshwater ecosystems. Dam construction, for example,

disrupts river flows by changing their seasonality and

establishing lentic (still water) conditions (e.g., Pelicice

et al., 2014).

Hydrological alterations are escalating worldwide as

human populations grow and global climate change

shifts the planetary energy and water balance

(V€or€osmarty et al., 2000). These environmental changes

are widespread in tropical regions, particularly in large

river basins such as the Congo, Mekong, and Amazon

(Wohl et al., 2012). In the Amazon (the largest of these

basins), construction of dams, mining, land-cover
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change, and global climate change are driving rapid

degradation of freshwater ecosystems through changes

to the hydrological cycle (Castello et al., 2013b; Macedo

& Castello, 2015). Freshwater ecosystems cover over

1 million km2 of the Amazon Basin, draining ~6.9 mil-

lion km2 of moist tropical forests and savannas and dis-

charging 20% of global surface river flows into the

Atlantic Ocean (Coe et al., 2008).

Maintaining the integrity of freshwater ecosystems

requires understanding the full range of ecosystem

effects caused by hydrological alterations occurring

in adjoining freshwater, terrestrial, atmospheric, and

oceanic systems. However, predicting the impact of

hydrological alterations on large tropical basins is

difficult due to a lack of integration of available

knowledge. Most studies of drivers on hydrological

alteration of freshwater ecosystems have focused on

single dams in tributary watersheds, but they have

largely disregarded the cumulative effects of multiple

dams on the hydrological connectivity of freshwater

ecosystems systems. Similarly, most studies assessing

the consequences of hydrological alteration have

focused on specific ecosystem components (i.e., spe-

cies composition, biogeochemical cycling), but have

paid little attention to whole ecosystem structure and

function.

This review provides a comprehensive framework

for understanding the linkages among Amazon fresh-

water ecosystems, drivers of hydrological alteration,

ecosystem responses and feedbacks to these changes,

and the role of management policies. The framework

hinges on four research questions: (i) What is the role

of hydrological connectivity in maintaining the struc-

ture and function of freshwater ecosystems? (ii) How

and to what extent are dams, land-cover change, min-

ing, and global climate change altering the hydrological

connectivity of Amazon freshwater ecosystems? (iii)

What are the consequences of these hydrological alter-

ations for freshwater ecosystems at the Amazon Basin

scale? and (iv) What deficiencies in existing policies

may hinder protection of freshwater ecosystems from

hydrological alteration?

Hydrological connectivity

Macroscale patterns

The hydrological connectivity of Amazon freshwater

ecosystems operates in four dimensions, one temporal

and three spatial (Fig. 1; adapted from Ward, 1989). In

the temporal domain, connectivity refers to seasonal

and interannual changes in water flows (e.g., rainfall).

In the spatial domain, it consists of longitudinal (head-

water–estuary), lateral (river–land or stream–land), and

vertical (river–atmosphere or land–atmosphere) con-

nections.

Rainfall in the Amazon depends on the trade winds

and the South American Monsoon System (Fig. 1),

which transfer moisture from the Atlantic Ocean to the

Basin (Marengo et al., 2012; Jones & Carvalho, 2013).

Average annual rainfall over the Basin is

~2200 mm yr�1 and highly seasonal (Huffman et al.,

2007). Between 50 and 75% of this annual rainfall

(~9600 km3 yr�1) is intercepted by forests and savannas

and recycled back to the atmosphere via evapotranspi-

ration (Shuttleworth, 1988; Malhi et al., 2002;

D’Almeida et al., 2007). The remainder falls over fresh-

water ecosystems, or drains through forests and savan-

nas (i.e., surface runoff) and enters a vast network of

streams, lakes, and rivers, transporting terrestrial

organic and inorganic materials into freshwater ecosys-

tems. Downstream flows transport these materials and

discharge an estimated ~6700 km3 yr�1 of freshwater

into the Atlantic Ocean (Coe et al., 2008).

Influence on freshwater ecosystems

Rainfall and geomorphology control the physical and

chemical properties of rivers (Sioli, 1984; Junk et al.,

2011; Hess et al., 2015). Whitewater rivers originate in

the Andes Mountains and carry heavy sediment loads.

Clearwater rivers originate in the southeastern region

of the basin and drain the weathered soils of the Brazil-

ian and Guianan Shields, carrying some dissolved min-

erals but few suspended sediments. Blackwater rivers

(e.g., the Negro River) drain the sandy, nutrient-poor

soils of the central Amazon, carrying few suspended

sediments but high levels of acidity and tannins. These

rivers form a diverse array of freshwater ecosystems

throughout the Basin (Fig. 2).

As intermittent rainfall flows from land into stream

channels, it creates aquatic–terrestrial interfaces (re-

ferred to as riparian zones of small streams) that are the
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Fig. 1 Schematic diagram of the main pathways involved in the

hydrological connectivity of Amazon freshwater ecosystems.

© 2015 John Wiley & Sons Ltd, Global Change Biology, 22, 990–1007

DEGRADATION OF AMAZON FRESHWATER ECOSYSTEMS 991



principal zone of exchange of water, nutrients, sedi-

ments, and organic matter between terrestrial and

freshwater ecosystems (Junk, 1993; Godoy et al., 1999;

McClain & Elsenbeer, 2001; Naiman et al., 2005).

Despite their size, small streams and their riparian

zones are numerous and likely the most extensive

freshwater ecosystem of the Basin (Junk, 1993; Beighley

& Gummadi, 2011). Although their extent is unknown,

headwater streams are thought to represent two-thirds

of total stream length in typical watersheds and thus

underpin basinwide freshwater connectivity (Freeman

et al., 2007a).

In the lower reaches of large rivers, seasonal inunda-

tion cycles (i.e., flood pulses) with mean amplitude of

10 m (to as high as 15 m in the Purus River) control

floodplain ecosystems supporting diverse forest stands

and aquatic macrophyte communities (Junk et al.,

1989). These floodplains, which can span tens of kilo-

meters (Hess et al., 2003), are fertile and productive in

whitewater rivers due to their heavy sediment loads.

The annual rise and fall of river waters induce lateral

exchanges of organic and inorganic materials between

river channels and floodplain habitats that influence

most biogeochemical processes in these ecosystems

(Junk et al., 1989; Melack et al., 2009).

Local precipitation and inputs from streams and riv-

ers form several extensive wetlands in depressed or flat

areas of the basin. As river networks traverse large

inland depressions in the Basin, they form extensive

wetlands in the Mara~non-Ucayali region (Peru), Llanos

de Moxos (Bolivia), and Bananal Island (Brazil), among

others (Kalliola et al., 1991; Hamilton et al., 2002). Sea-

sonal rainfall and high water tables form swamps and

flooded savannas in interfluvial regions (e.g., in the

Fig. 2 Drivers of hydrological alteration in Amazon freshwater ecosystems. Figure by Paul Lefebvre (adapted from Castello et al.

2013b).
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Negro Basin; Junk, 1993). Precipitation and seasonal

inundation driven by flood pulses and tides create a

diverse wetland mosaic on Maraj�o Island in the estuary

(Smith, 2002).

Ecosystem services

The hydrological connectivity of Amazon freshwater

ecosystems enables the provision of several services

that are vital for local, regional, and global communi-

ties. Key ecosystem services include biodiversity main-

tenance; water quality, climate and flow regulation;

nutrient and carbon (C) cycling; and food and fiber pro-

duction. The diversity of freshwater ecosystems found

in the Basin sustains a wealth of life forms. According

to available estimates, the Basin contains between 6000

and 8000 fish species (Schaefer, 1998; Reis et al., 2003),

of which only about 2320 have been described to date

(Abell et al., 2008). About half of those fish species are

thought to inhabit river floodplains, while the rest

occupy headwater streams, where geographic isolation

promotes endemism (Junk & Piedade, 2004). The diver-

sity of bird and tree species is similarly high, with an

estimated 1000 flood-tolerant tree species and over 1000

bird species inhabiting the lowland forests of the Cen-

tral Amazon (Junk, 1989; Stotz et al., 1996). Much of this

diversity occurs along river networks, as ecological cor-

ridors with specific environmental conditions deter-

mine species occurrence and mediate movement

through the landscape (e.g., Van Der Windt & Swart,

2008).

As rainwaters drain through terrestrial ecosystems,

riparian zones regulate water quality by filtering the

organic and inorganic materials they carry (Alexander

et al., 2000). Terrestrial inputs are transported down-

stream, deposited, and remobilized in river floodplains

until they are discharged into the ocean (Wipfli et al.,

2007; McClain & Naiman, 2008). During this transport,

freshwater ecosystems regulate water flows, buffering

flows during high discharge periods and maintaining

them during low discharge periods. This regulation of

flows promotes soil infiltration, recharges groundwater

stores, and facilitates regular river navigation and

hydropower generation.

Seasonal inundation induces the constant recycling

of nutrients in river floodplains, leading to primary

production rates (~17 Mg C ha�1 yr�1) that are five

times higher than those of upland forests (Melack &

Forsberg, 2001; McClain & Naiman, 2008). About 93%

of this production occurs in levee forests and C4 macro-

phyte communities (i.e., Echinochloa polystachya; Pie-

dade et al., 1991), which in whitewater rivers reach one

of the highest primary productivity rates on the planet

(Melack & Forsberg, 2001). Net primary production

along river floodplains in a 1.77 million km2 region of

the Central Amazon has been estimated at

~298 Tg C yr�1, of which ~210 Tg C yr�1 are out-

gassed as carbon dioxide (CO2) and subsequently recy-

cled as net primary production (Melack et al., 2009).

These natural carbon fluxes are comparable in scale to

net carbon emissions attributed to land-cover change in

the Brazilian Amazon during the 1990s (Houghton

et al., 2000), making them an important part of the glo-

bal carbon cycle.

Seasonal inundation promotes secondary productiv-

ity by allowing fish populations to exploit plant-based

resources in the floodplains (Lagler et al., 1971;

Goulding, 1980; Castello, 2008a). Fish migrate laterally

onto the floodplains during rising river waters to

avoid predators and feed on nutritious plant materi-

als (Welcomme, 1985; Gomes & Agostinho, 1997; Cas-

tello, 2008a,b). Conversely, declining waters force fish

to migrate back to river channels and lakes, where

water quality is generally poor and fish are more vul-

nerable to predation (Welcomme, 1985; De M�erona &

Gascuel, 1993; Arantes et al., 2013). These lateral

migrations are performed by resident floodplain spe-

cies (e.g., Cichla spp.), as well as migratory species

that travel longitudinally along river channels (e.g.,

Prochilodus nigricans; Ribeiro et al., 1995; Barthem &

Goulding, 2007). Some large-bodied catfish species

migrate exclusively along river channels from the

estuary to the headwaters (e.g., Brachyplatystoma rous-

seauxii), but they prey on floodplain-dependent spe-

cies (Barthem & Goulding, 1997). The productivity of

Amazon river floodplain fish populations sustains

high mean per capita fish consumption rates of 40–
94 kg yr�1, well above the global average of

16 kg yr�1 (Isaac & Almeida, 2011).

Spatial and seasonal patterns of water flows influence

many other animals at different points in their life his-

tories. Turtles (Podocnemis spp.), caimans (e.g., Melano-

suchus niger), otters (Pteronura brasiliensis), and dolphins

(Inia geoffrensis, I. boliviensis, and Sotalia fluviatilis) have

life cycles dependent on seasonal colonization of the

floodplains during high waters (Martin & Da Silva,

2004; Martin et al., 2004; Fach�ın-Ter�an et al., 2006; Da

Silveira et al., 2010, 2011). Many terrestrial animals

inhabit riparian zones year-round or during the dry

season to access water and feed on fruits, leaves, and

other animals (Naiman & Decamps, 1997; Bodmer et al.,

1999). Riparian zones also serve as important migratory

corridors for wide-ranging terrestrial species such as

jaguars (Panthera onca), tapirs (e.g., Tapirus terrestris),

and peccaries (e.g., Tayassu pecari; Lees & Peres, 2008;

Keuroghlian & Eaton, 2008). Some terrestrial and

migratory bird species use wetlands as seasonal feed-

ing grounds (Petermann, 1997).

© 2015 John Wiley & Sons Ltd, Global Change Biology, 22, 990–1007
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Productive whitewater river floodplains allow Ama-

zonians to generate important economic activities while

diversifying their diets. Hunting along riparian zones is

widespread (Bodmer et al., 1999; Parry et al., 2014), as is

exploration of palm fruits (e.g., Euterpe oleracea), timber

(e.g., Calycophyllum spruceanum), and fish (e.g., Arapaima

spp.; Pinedo-Vasquez et al., 2001; Brond�ızio, 2008; Cas-

tello & Stewart, 2010). Together, these activities often

contribute as much as two-thirds of rural household

income (McGrath et al., 2008, 2015; Ewel, 2009).

Drivers of hydrological alterations

Amazon freshwater ecosystems are becoming increas-

ingly degraded due to human development activities,

including the construction of dams, mining, land-cover

change, and global climate change (Fig. 2). Many of

these activities were historically driven by domestic

markets and national development interests, which

prompted construction of roads and conversion of

native forests and savannas to croplands and range-

lands (Laurance et al., 2001; Nepstad et al., 2014).

Although these domestic forces remain strong, the

growing engagement of Amazonian countries in

export-oriented markets for agricultural and mineral

commodities has made the region increasingly suscep-

tible to international forces. For example, multilateral

development initiatives, including the Initiative for the

Integration of the Regional Infrastructure of South

America (IIRSA) and the South American Council on

Infrastructure and Planning (COSIPLAN), have

invested heavily in the construction of waterways,

hydroelectric dams, and other infrastructure in the

Amazon. The result has been large-scale disruptions to

the hydrological connectivity of Amazon freshwater

ecosystems via a variety of mechanisms, including: (i)

storage of water in hydroelectric reservoirs; (ii) changes

in seasonal flood dynamics; (iii) reduced rainfall, water

quality, and evapotranspiration at regional scales; and

(iv) increases in the frequency and intensity of extreme

weather events (i.e., droughts, floods; Fig. 3).

Dams

Some of the most direct impacts on streams and rivers

stem from dams (Fig. 4a). Storage of water in reservoirs

regulates water flows, blocks animal movements, and

disrupts downstream transport of materials. Water

storage in reservoirs can drastically alter stream or river

thermal regimes, depending on the depth from which

water is released and the reservoir’s physical character-

istics (e.g., depth, surface area; Olden & Naiman, 2010;
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Macedo et al., 2013). Reservoirs can also reduce river

discharge as stored water evaporates or is diverted for

other uses (e.g., irrigation). Flow regulation by dams

also disrupts lateral connectivity by decreasing sea-

sonal flow variability, most notably by attenuating

flood maxima (Poff et al., 1997; Poff & Hart, 2002).

Dam-induced hydrological alterations are increas-

ingly common in the region as dams of all types and

sizes proliferate. Although there is uncertainty in avail-

able data, the total installed power generation capacity

in the basin is expected to double from ~18 000 mega-

watts (MW), provided by 154 large hydroelectric dams

currently in operation, to ~37 000 MW with the com-

pletion of ~21 additional dams now under construction

(Fig. 2; Table 1; ANEEL, 2012; Proteger, 2012; Castello

et al., 2013b). Construction of an estimated 277 planned

hydroelectric dams (now in the initial planning stages)

could add as much as ~58 000 MW of installed capacity

in the region, although many dams operate below

capacity. Most hydroelectric dams are relatively small

(<100 MW) and are or will be located in the Araguaia-

Tocantins, Tapaj�os, and Madeira tributary basins

(Table 1). Although global attention has focused on the

construction of large hydroelectric dams, the most

abundant dams in the Amazon are actually small farm

impoundments, which are constructed in headwater

stream reaches to provide drinking water for cattle,

facilitate road construction in flat areas, or enable

small-scale energy or irrigation. In 2007, an estimated

10 000 such impoundments existed in the headwaters

of the Xingu Basin alone (Macedo et al., 2013), averag-

ing one impoundment per seven kilometers of stream

length. The cumulative impacts of many small dams

may be significant, particularly in the sensitive headwa-

ters regions where they are most common.

Land-cover change

Land-cover change, particularly the conversion of

native forests and savannas to other land uses (e.g.,

agriculture, pastures), alters the surface water balance

and partitioning of rainfall into evapotranspiration, dis-

charge, and soil moisture (Abell et al., 2007; Brauman

et al., 2007; Sterling et al., 2012; Wohl et al., 2012). In

general, crops and pasture grasses use less water than

native vegetation due to their lower height, less com-

plex canopy, shallower rooting depth, and lower leaf

area index (Calder, 1998; Giambelluca, 2002). As a

result, at local scales, deforestation tends to decrease

evapotranspiration and increase runoff and stream dis-

charge (Sahin & Hall, 1996; Andreassian, 2004; Coe

et al., 2011; Hayhoe et al., 2011). Over large spatial

scales, deforestation is likely to reduce regional rainfall

and alter rainfall seasonality (Butt et al., 2011; Spracklen
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et al., 2012; Yin et al., 2014), which in turn would

decrease stream and river discharge (Fig. 4b; Brui-

jnzeel, 2004; Stickler et al., 2013).

Land-cover change has affected about 1.4 mil-

lion km2 (~20%) of the Amazon Basin (Hansen et al.,

2013; Fig. 2), primarily driven by expansion of cattle

ranching and crop production into native forest and

savanna regions (Nepstad et al., 2014). Most land-

cover change to date has occurred in the headwaters

of the Araguaia-Tocantins, Xingu, and Tapaj�os Rivers

(i.e., the ‘arc of deforestation’); more recently, it has

extended to the south and southwestern regions of

the basin. High rates of deforestation observed in the

early 2000s decreased significantly after 2005, particu-

larly in Brazil (Macedo et al., 2012; Nepstad et al.,

2014). They remain low relative to historic rates, but

have shown an increasing trend since 2012 (INPE

2014). Growing demands for agricultural products

and weakening of environmental legislation in some

countries have increased pressures on the region’s

native vegetation, especially in the Andes (Guti�errez-

V�elez et al., 2011) and Cerrado savannas (Soares-Filho

et al., 2014).

Mining

Mining involves rapidly expanding operations to

extract gold, oil, gas, bauxite, and iron ore. Although

gold mining activities have existed in the Amazon for

decades, they have recently surged following a 360%

increase in gold prices after 2000 (Fig. 2; Nevado et al.,

2010; Swenson et al., 2011; Asner et al., 2013; De Miguel

et al., 2014; Marinho et al., 2014). Artisanal miners

extract gold by dredging sediments from the river bot-

tom and using mercury (Hg) to amalgamate fine gold

particles, thereby altering stream and river morphol-

ogy, increasing suspended sediment loads, and pollut-

ing waters via the release of Hg. Mercury can be

transformed by microorganisms into Methylmercury

(MeHg), which is a powerful endocrine disruptor that

can damage the nervous system, be assimilated into

living tissue, and become magnified in food webs via

bioaccumulation (Zhang & Wong, 2007).

Large-scale mining for iron ore, bauxite, oil, and

gas impacts freshwater ecosystems (both directly and

indirectly) by promoting deforestation, dam construc-

tion, and roads in remote regions. Because smelting

of iron ore and bauxite is energy intensive, the steel

and aluminum industries have motivated the con-

struction of many dams in the Amazon (Switkes,

2005; Fearnside, 2006), including the Tucuru�ı Dam,

which flooded an area spanning 2860 km2 and dis-

placed more than 24 000 people (WCD, 2000). Where

hydroelectric power is insufficient to meet mining

demands, smelters consume charcoal that is produced

by burning native vegetation (Fearnside, 1989; Sonter

et al., 2014a,b). The Caraj�as Mining Complex (Par�a,

Brazil), for example, is the world’s largest iron ore

mine with large stores of bauxite, copper, manganese,

and gold. Since construction in the 1970s, the Greater

Caraj�as Project has led to the construction of a rail-

road, many roads, and a large hydroelectric dam, all

of which have led to significant land-cover changes.

Leases for oil and gas extraction drive similar land-

cover changes and infrastructure development. Today,

more than two-thirds of the Peruvian and Ecuadorian

Amazon are covered by oil and gas leases (Fig. 2),

many of which overlap protected areas and indige-

nous reserves in remote regions (Finer et al., 2008). As

energy demand grows, controversial projects like the

Camisea gas pipeline in Peru are likely to become

more common, particularly in the Andean Amazon

(Finer et al., 2008).

Climate change

Increases in atmospheric greenhouse gas (GHG) con-

centrations are driving global climate changes that will

likely exacerbate the impacts of ongoing hydrological

alterations on freshwater ecosystems (Fig. 3; Melack &

Coe, 2013). Climate predictions for the future of the

Amazon generally indicate that temperatures will

Table 1 Amazon hydroelectric dams by installed potential,

country, and subwatershed

Operational Construction Planned

Dam capacity

<100 MW 135 14 206

100–1000 MW 14 4 56

>1000 MW 5 3 15

Country

Brazil 138 16 221

Peru 7 2 30

Ecuador 5 2 17

Bolivia 4 1 8

Colombia 0 0 1

Subwatershed

Araguaia-Tocantins 56 2 101

Madeira 43 8 44

Tapaj�os 33 6 73

Ucayali 6 1 15

Xingu 6 1 2

Mara~non 5 3 22

Amazon drainage 4 0 8

Negro 1 0 1

Purus 0 0 6

Napo 0 0 4

Caqueta-Japur�a 0 0 1
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increase, promoting melting of snow and ice in the

Andes Mountains (IPCC, 2014) and reducing the water

storage and discharge buffer capacity of freshwater

ecosystems (Junk, 2013). Projections also indicate that

total rainfall will likely decrease, while seasonal vari-

ability will increase and extreme weather events (i.e.,

droughts, floods) will become more frequent and sev-

ere (Mahli et al., 2007; Malhi et al., 2009; IPCC, 2014).

Such dry–warm conditions would likely dampen

annual flood pulses and increase the frequency and

severity of low-water events in large rivers (Costa et al.,

2003). Low-order rivers could experience dramatic

changes in discharge and flood pulses, while many

perennial headwater streams may become intermittent

(Junk, 2013).

Regional land-cover changes have been linked to

decreases in water recycling and increased land surface

temperatures, driving local climate changes beyond

those attributed to atmospheric GHG concentrations

(Silv�erio et al., 2015). By causing near-term shifts in the

energy and water balance, land-cover changes may pro-

voke shifts in regional rainfall regimes, increased land

surface temperatures, and changes in river flows (Pan-

day et al., 2015). Land-cover change in the western

Amazon, for example, has been linked to decreased

precipitation, longer dry seasons, and higher amplitude

of seasonal water flow (Lima et al., 2013). Cumulative

land-cover changes in the western Brazilian Amazon

(Rondônia state) have been linked to delays in the onset

of the wet season, decreasing its length by an estimated

six days per decade (Butt et al., 2011; Yin et al., 2014).

Climate and land-use change often act synergistically

(Fig. 3). Regional deforestation appears to amplify the

magnitude of droughts, making them dryer and more

severe than they would be with full forest cover (Bagley

et al., 2014). Severe droughts, in turn, can fuel further

land-cover changes by killing trees directly (Lewis

et al., 2011) or triggering more widespread and intense

wildfires (Brando et al., 2014), both of which release

carbon stored in vegetation back to the atmosphere.

These changes are expected to disproportionately

impact dryer transitional forests (~40% of the Amazon

basin) and their associated freshwater ecosystems

(Brando et al., 2014).

Ecosystem impacts

Hydrological alterations trigger a wide range of

impacts on Amazon freshwater ecosystems, many of

which have complex feedbacks and synergistic interac-

tions. The available information indicates that the

cumulative impacts of dams, land-cover changes, min-

ing, and global climate changes can substantially alter

biogeochemical cycling, transport of organic and inor-

ganic materials, freshwater community composition,

and productivity (Fig. 3). These changes may hinder

the provision of key ecosystem services by causing bio-

diversity loss and increasing disturbances such as

floodplain fires and extreme droughts and floods.

Decreases in hydrological connectivity can also drive

changes in water quality, carbon cycling, and fish

yields, and may limit the availability of water for

human use, navigation, and power generation (Fig. 3).

Disrupted biogeochemical cycles

The biogeochemistry of freshwater ecosystems is gov-

erned primarily by hydrology, soil type, nutrient avail-

ability, and terrestrial inputs of organic and inorganic

matter. Biogeochemical cycling, in turn, is largely con-

trolled by biota, temperature, light availability, and

water chemistry. All of these factors vary geographi-

cally throughout the Amazon, and changes to any of

them can indirectly affect others. In temperate water-

sheds, conversion of forests to croplands has been asso-

ciated with increased stream flow and nutrient loading,

causing large-scale eutrophication (Carpenter et al.,

1998; Schindler, 2006). However, little is known about

how similar changes affect tropical systems, where soils

require different fertilization regimes and differ in their

capacity to retain and cycle nutrients. In the southeast-

ern Amazon (Xingu Basin) fertilizer use in soy crop-

lands has not affected stream nutrient concentrations

due to the high binding capacity of regional soils (Neill

et al., 2013). On the other hand, land-use practices in

the same region have degraded riparian vegetation and

led to the establishment of thousands of small farm

impoundments, which together have warmed headwa-

ter streams by 2–3 °C and increased discharge fourfold

relative to streams in forested watersheds (Hayhoe

et al., 2011; Macedo et al., 2013).

In addition to these physical changes to stream water,

mining exploration, agricultural development, and

dam construction can introduce new pollutants into

freshwater ecosystems. Mercury, for example, is one of

several pollutants that are produced or accumulated in

reservoirs, dispersed downstream, and magnified in

food webs (Schwarzenbach et al., 2006; Ashe, 2012;

Marinho et al., 2014). The anoxic conditions commonly

found in dam reservoirs increase natural levels of

MeHg. For example, MeHg levels in water, plankton,

and fish downstream of the Balbina Dam on the

Uatum~a River have been shown to be higher when

reservoir water is stratified, because stratification fos-

ters the anoxic conditions required for methylation

(Kasper et al., 2014).

Reservoirs often flood large forested areas, killing

trees that produce large quantities of methane (CH4) as
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they decay. As a result, tropical reservoirs can have

high concentrations of CH4 and CO2 in their deeper

anoxic layers (Kemenes et al., 2007), although there are

few reliable estimates of the rate at which these GHGs

are emitted to the atmosphere. Estimates from the

Balbina hydroelectric dam (Amazonas state, Brazil)

suggest that emissions from within and downstream

of the reservoir totaled 3 Tg C yr�1 (Kemenes et al.,

2007, 2011). Other studies of tropical dams likely

underestimate GHG emissions because they exclude

downstream fluxes (St Louis et al., 2000; Demarty &

Bastien, 2011). Sediment deposition in reservoirs (par-

ticularly in whitewater rivers) has the potential to trap

C, lowering CO2 and methane (CH4) emissions that

would normally occur from biological processing

downstream (Smith et al., 2001). It is unclear whether C

storage in sediments could be sufficient to compensate

emissions, but Amazon reservoirs are likely net pro-

ducers of GHGs (St Louis et al., 2000; Fearnside, 2004;

Kemenes et al., 2011).

Altered sediment dynamics

Dams and land-cover changes affect river discharge and

sediment transport and mobilization, which are key

determinants of river geomorphology, but their net

effects are scale dependent and context specific. In the

Upper Xingu Basin, for example, a fourfold increase in

stream flow in agricultural watersheds had little effect

on sediment loads or the morphology of small headwa-

ter streams (Hayhoe et al., 2011). On the other hand, in

the Araguaia River Basin a 25% increase in annual dis-

charge (due to large-scale land-cover change) increased

bed load transport by 31% and completely restructured

the river’s morphology (Latrubesse et al., 2009; Coe et al.,

2011). In contrast, hydroelectric projects on whitewater

rivers such as the Madeira are expected to trap large

amounts of sediments, reducing sediment transport and

potentially altering river floodplain morphology (Fearn-

side, 2013). Such changes in sediment dynamics and

water temperature may affect incubation and develop-

ment time, sex determination, growth rates, and metabo-

lism of some species, particularly ectotherms (e.g., fish,

reptiles). The nesting outcomes of turtle species such as

the giant Amazon river turtle (Podocnemis expansa) and

yellow-spotted sideneck turtle (Podocnemis unifilis) have

been linked to river dynamics, temperature, and the

grain size of sediments in the nesting area (Lubiana &

Ferreira J�unior, 2009; Ferreira J�unior & Castro, 2010).

Deforestation of riparian areas

Human settlements and development activities have

disproportionately impacted stream riparian zones and

river floodplain ecosystems. Over 50% of floodplain

forests in the Lower Amazon region were deforested by

2008 (Ren�o et al., 2011), compared to ~20% of upland

forests in 2012 (Hansen et al., 2013). In addition to redu-

cing biodiversity, deforestation of riparian areas

reduces filtration of terrestrial inputs flowing into

streams and rivers, causing erosion, lowering water

quality, and altering aquatic primary production (Wil-

liams et al., 1997; Neill et al., 2001). In whitewater riv-

ers, floodplain deforestation reduces the abundance of

C3 plant communities that sustain herbivorous and

detritivorous animal populations, as well as C4 macro-

phyte communities that are key biological producers

(Araujo-Lima et al., 1986; Forsberg et al., 1993). Riparian

deforestation also removes structures that provide

habitat for aquatic biota (e.g., macrophytes, woody deb-

ris) and reduces shading of small streams, often

increasing incident sunlight and water temperature,

which may directly affect species composition and

metabolism (Bojsen & Barriga, 2002; Sweeney et al.,

2004; Macedo et al., 2013).

Changing inundation regimes

Disruption of seasonal inundation regimes impacts spe-

cies composition and biogeochemical cycling in river

floodplains. Floodplain forest trees have a number of

adaptations to cope with the physiological stress

caused by regular seasonal flooding (Haugaasen &

Peres, 2005). Global climate change (coupled with

large-scale land-cover change) is expected to shift these

hydrological regimes by decreasing mean annual rain-

fall and increasing the frequency of extreme weather

events (e.g., droughts and floods). Such changes in the

inundation regime, particularly reduced flood maxima,

could reduce selection for flood-tolerant species and

alter the species composition of floodplain forests (Nils-

son & Berggren, 2000). Reduced flood maxima could

reduce lateral exchanges between river channels and

floodplains, decreasing nutrient recycling and associ-

ated biological productivity (Nilsson & Berggren, 2000)

and hence altering regional C budgets, including GHG

emissions. Reduced flood maxima can also increase the

frequency, severity, and ecological impact of fires,

given that floodplain trees lack many traits associated

with fire and drought resistance (Brando et al., 2012;

Flores et al., 2012). In the Middle Rio Negro, for exam-

ple, severe droughts have caused fires that killed over

90% of floodplain forest trees, which showed little sign

of regeneration even a decade later (Flores et al., 2012).

Disruption of seasonal inundation regimes by dams

also disrupts the migrations of fish and other fauna

(Jackson & Marmulla, 2001). Most dams in the Amazon

are constructed in the middle and upper reaches of riv-
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ers (Fig. 2), affecting resident and long-distance

migrants whose home ranges encompass the area.

Depending on river and reservoir characteristics, atten-

uation of seasonal inundation regimes and reductions

in high-flood maxima can restrict access to floodplain

food and habitat resources for fish populations far

downstream. Many other animal groups (e.g., turtles,

caimans, otters, dolphins) are similarly affected by

attenuated inundation. Lateral and longitudinal restric-

tions of fish migrations by dams have led to dramatic

fishery impacts in the Araguaia-Tocantins Basin and

elsewhere in the world (Ribeiro et al., 1995; Limburg &

Waldman, 2009; Fei et al., 2015). Continued hydroelec-

tric development in the Amazon is thus likely to

disrupt the ecosystem roles of many animals and

reduce fisheries yields, with the potential to threaten

regional income and food security (Castello et al., 2015).

Such hydrological alterations also limit animal disper-

sal and recolonization after extreme events, increasing

the likelihood of biological extinctions over the long

run (Hess, 1996; Fagan, 2002), particularly in headwater

streams with high species diversity.

Establishment of reservoir conditions

By replacing lotic habitats with lentic ones, the storage

of water in reservoirs threatens specialist endemic spe-

cies and favors generalist species, leading to biotic

homogenization and reduced biodiversity (Poff et al.,

1997; Liermann et al., 2012). As a result, Amazonian

reservoirs are often heavily vegetated with macro-

phytes and dominated by species adapted to lentic con-

ditions (Junk & Mello, 1990; Gunkel et al., 2003). In the

Araguaia-Tocantins River Basin, for example, construc-

tion of the Tucuru�ı Dam led to a dominance of predator

species, and increased the abundance and biomass of

detritivorous Prochilodontids and planktivorous

Hypophthalmus spp. (Ribeiro et al., 1995). It is often

argued that reservoirs create additional habitat, but

habitat quality may be poorer than the natural habitats

they replace. For example, today the 4500 km2 Balbina

Reservoir supports giant otter (Pteronura brasiliensis)

populations twice as large as those before construction,

but four times smaller than those predicted by available

habitat (Palmeirim et al., 2014).

Policy limitations

Some policies pertinent to freshwater ecosystem conser-

vation exist, including laws governing protected areas,

conservation of forests on private properties, water

resource management, and environmental licensing of

hydroelectric dams (Fig. 5). However, each of these

policies has limited capacity to protect freshwater

ecosystems, and combined they fail to address the full

range of drivers of hydrological alteration (Fig. 5). The

main limitation of these policies is their disregard for

the role of hydrological connectivity in freshwater

ecosystem structure and function.

Protected areas

The Brazilian Amazon enjoys a relatively high level of

protection, with a network of nature reserves, indige-

nous lands, and sustainable use areas covering ~54% of

its area (Soares-Filho et al., 2010; Castello et al., 2013b).

Although it is touted as the model of Amazonian con-

servation, this protected area network has limited

capacity to protect freshwater ecosystems because its

design was largely based on the biogeography of terres-

trial taxa, with little regard for hydrological connectiv-

ity (Peres & Terborgh, 1995; Abell et al., 2007). A large

proportion of headwater streams, rivers, and other wet-

land types are unprotected, and many freshwater

ecosystems within protected areas are vulnerable to

upstream threats (e.g., dams) outside their boundaries

(Pringle, 2001; Hansen & Defries, 2007). Furthermore,

many protected areas overlap competing land designa-

tions or are governed by laws that allow mining, forest

exploration, or hydroelectric development within their

boundaries (Ver�ıssimo et al., 2011; Ferreira et al., 2014).

For example, the original design of Brazil’s Belo Monte

Hydroelectric Complex contemplated five separate

reservoirs within federal indigenous reserves upstream

of the Belo Monte Dam in the Xingu River. Although

the five reservoirs are not yet being constructed, they

may eventually be built to allow Belo Monte to function

at capacity (Stickler et al., 2013). Brazil’s Congress is

also debating several new laws (i.e., the ‘Mining Code’,

PEC215, PL 3.682) that could open protected areas and

indigenous reserves to mining exploration. In addition,

Amazonian protected areas have been increasingly

downgraded, downsized, degazetted, and reclassified

since 2008, mainly to enable the generation and trans-

mission of hydroelectric power (Bernard et al., 2014;

Ferreira et al., 2014).

Climate and land-use policies

Brazil and Peru regulate forest cover on private proper-

ties. The Brazilian Forest Code requires landowners in

the Amazon biome to conserve native vegetation on

80% of their property in forested regions and 20–35% in

Cerrado regions. It also designates riparian forest buffer

zones as Areas of Permanent Preservation (Soares-Filho

et al., 2014). Peru’s Forest and Fauna Law also man-

dates the conservation of a 50 m riparian buffer zone

along rivers and lakes. By requiring conservation of
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native vegetation in riparian zones, both laws have the

potential to mitigate the negative impacts of land-cover

change on freshwater ecosystems. However, compli-

ance with these regulations has been notoriously low

due to poor monitoring and enforcement. In Peru, for

example, the average protected riparian buffer is only

about half the legally required width (McClain & Cos-

sio, 2003).

A substantial reduction in Brazil’s deforestation rates

from 2005 to 2012 has been attributed to domestic

policies, including Brazil’s National Climate Change

Plan and Low Carbon Agriculture program, which cre-

ated financial incentives (e.g., low-interest loans) and

disincentives (e.g., restrictions on credit) to reduce

deforestation (Nepstad et al., 2014). Expansion of pro-

tected areas and improvements in monitoring and

enforcement of environmental laws were also key fac-

tors in reducing illegal deforestation, particularly in the

southeastern Amazon (Nepstad et al., 2009; Arima

et al., 2014). These national efforts were aided by non-

profit campaigns to boycott products produced in ille-

gally deforested areas; voluntary moratoria aimed at

restricting market access for commodities produced on

newly deforested lands; and restrictions on access to

credit for illegal deforesters. Continued efforts to estab-

lish deforestation-free supply chains in Brazil have

shown some promise in curbing the impact of crop and

cattle production on native ecosystems (Gibbs et al.,

2015a,b). However, recent increases in deforestation

rates in the Brazilian Amazon suggest that these initia-

tives are still vulnerable to external market pressures,

political administrations, and changes in consumer

demand. That vulnerability is due in part to a frag-

mented policy environment and lack of an overarching

legal framework to protect Amazon terrestrial and

aquatic ecosystems.

Pros: 
Curb land cover change 
Cover ~36% of basin area 

Cons: 
Vulnerable to PADDD (PA downgrading, 
downsizing, and degazettement) 
Overlap areas designated for mining, dams, 
and forest exploration 

Pros: 
Curb deforestation, other land-cover change 

Cons: 
Fragmented, lack overarching legal 
framework  

Pros: 
Seeks to balance economic, social, and 
environmental impacts 

Cons: 
Exempts dams <10 MW 
Process lacks transparency, prone to 
corruption and conflicts of interest 
Vulnerable to external pressures 

Pros: 
Ensures water for human use 
Considers hydrological connectivity within 
countries 

Cons: 
Mostly unimplemented 

No policy addresses the connectivity of freshwater ecosystems across 
international boundaries or focuses on preserving their biological integrity 

Drivers Assessment Policies 

Protected 
areas 

Climate & 
land-use 
policies 

Environmental 
licensing of 

dams 

Water 
resource 

management 

Land-
cover 

change 

Mining 

Dams 

Global 
climate 
change 

Mining 
policies 

Pros: 
Is regulated in most countries 

Cons: 
Most countries allow mining to overlap other 
land designations, including protected areas 
and indigenous reserves 

Fig. 5 Schematic diagram depicting the main drivers of hydrological alteration (Red rectangles), existing policies (Green rectangles) that

address them, and respective pros and cons (White boxes).
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Water resource management

All Amazonian countries are implementing water

resource management laws to protect the availability

and quality of water. Although these laws vary across

countries, they rely on the common principle that water

is a finite resource that is vulnerable to human activities

and should be managed at the watershed scale (Setti,

2004). Because these laws focus almost exclusively on

water as a resource to satisfy human needs, they cannot

ensure preservation of freshwater ecosystems. Further-

more, they are generally national in their jurisdiction,

contradicting the very principle of watershed-scale

management and ignoring the international connectiv-

ity of Amazon freshwater ecosystems. Even though

water resource laws encompass many large tributary

basins (e.g., the Caqueta-Japur�a, Napo, and Juru�a), the

lack of international coordination undermines their

potential effectiveness.

Colombia possesses a more comprehensive water

resource management framework than its neighboring

Amazonian nations. It complements standard water

resource management principles by establishing goals

for conserving the integrity of freshwater ecosystems,

while recognizing their diversity and the need to use all

available information and work across administrative

boundaries. However, there are no data on the effec-

tiveness of the Colombian framework for water

resource management. This scarcity of data, along with

limited human and financial resources for management

activities, presents a major challenge to effective fresh-

water ecosystem management (Oliveira, 2002; Castello

et al., 2013a,b; Brum et al., 2015; Cavole et al., 2015).

Environmental licensing of dams

Some countries (e.g., Peru and Brazil) have decision-

making processes to ensure that new hydroelectric dams

are economically viable and minimize environmental

and social impacts, while other countries do not (e.g.,

Bolivia; World Bank, 2008; Balb�ın & La Rosa, 2012).

Here, we focus on Brazil’s process because it has been

studied and is similar to that of other nations. The first

step in Brazil’s ‘environmental licensing’ process is an

inventory of the river basin and viability assessment of

the proposed project, followed by an Environmental

Impact Assessment (EIA) and a Report on Impacts to the

Environment (RIMA). The next step is public hearings in

the affected area, which may lead to revisions of the

EIA-RIMA documents. Once approved, governmental

agencies (e.g., IBAMA in Brazil) issue preliminary

licenses enabling firms to bid for construction contracts.

Although the EIA-RIMA process appears adequate

on the surface, this licensing process has several defi-

ciencies that negatively impact freshwater ecosystems

(La Rovere & Mendes, 2000; Switkes, 2002, 2007; Fearn-

side, 2013). First, hydroelectric dams smaller than

10 MW of installed energy production capacity are

exempt from the process. Over half (~90) of the opera-

tional dams in the Amazon have an installed capacity

of 10 MW or less, compared to ~64 dams with a capac-

ity greater than 10 MW (Table 1). Although the indi-

vidual impacts of large dams may be great, the

cumulative effects of many small dams can surpass

those of the larger dams.

Second, EIA-RIMAs consistently underestimate the

socio-environmental impacts observed after dam con-

struction because the process lacks transparency, is

prone to corruption, and is riddled with conflicts of

interest. EIA-RIMA studies are developed by consult-

ing firms, which have monetary incentives to minimize

negative findings because they are hired directly by the

construction firms. Construction firms control study

results because their contracts specify that they own the

data and contents of the reports, whose publication is

subject to their approval. EIA-RIMA studies are thus

generally narrow in scope, often based on erroneous

information, address only the immediate effects of

dams, and are usually focused on collection of data

instead of integrated evaluation of socio-ecological

impacts (Kacowicz, 1985; Magalhaes, 1990; Fearnside,

2001, 2005, 2014; Switkes, 2002). Furthermore, EIA-

RIMA studies only consider the direct impacts of the

dam in question, ignoring cumulative impacts on

watersheds.

Finally, the licensing process is vulnerable to external

pressures. In some cases, the process has been hijacked

by federal agencies or via legal mechanisms that allow

judges to intervene and overrule the process (e.g., Law

no. 8437 of 30 June 1992, in Brazil). Individuals or cor-

porations can thus influence the process for political or

economic gains. For example, in 1998, despite severe

impacts associated with the Santo Antonio and Jira�u

Dams on Brazil’s Madeira River, ‘the decision to build

them was made before impacts were evaluated and the

licensing proceeded under political pressure despite

concerns raised by technical staff in the licensing

agency’ (Fearnside, 2014).

Lack of data and policy integration

The fragmented and incomplete nature of policies perti-

nent to freshwater ecosystem conservation has led

management agencies throughout the Amazon to

respond to freshwater impacts on a case-by-case basis,

with little if any consideration of cumulative impacts

over the whole Basin. Construction of Brazil’s Belo

Monte dam is a clear case where cumulative impacts
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have been ignored. Discussions regarding the dam’s

effect on freshwater ecosystems paid little attention to

the five additional reservoirs required for it to operate

at full capacity. They also ignored the environmental

impacts of new deforestation occurring around the con-

struction site at Altamira in the lower Xingu Basin.

The lack of a basinwide perspective on the capacity

of multiple stressors to affect freshwater ecosystems is

exacerbated by a widespread lack of data on freshwater

ecosystems, making it virtually impossible to detect

ongoing degradation trends (Junk & Piedade, 2004).

Except for land-cover change, which has been moni-

tored since the 1980s, there is a lack of baseline informa-

tion on the location and extent of pollution, small

dams, or deforestation of floodplains and riparian

zones (Castello et al., 2013b). Consequently, even

though hydrological alterations are widespread over

the basin, most studies and environmental impact

assessments likely underestimate the overall impacts

while the public remains uninformed about the ongo-

ing impoverishment of Amazon freshwater ecosystems.

Conclusions

The drivers of hydrological alteration of freshwater

ecosystems are dynamic and multifaceted. As Amazo-

nian countries pursue prevailing economic develop-

ment strategies, there has been a surge in dam

construction, mining activities, and land-cover changes,

suggesting that hydrological alterations will mark the

next phase in Amazonian development. The current

trajectory of dam construction will leave only three

free-flowing tributaries in the next few decades (i.e.,

Juru�a, Trombetas, and Ic�a-Putumayo) if all planned

dams are completed.

The available evidence indicates that dams, land-cover

change, and mining are affecting all four dimensions of

hydrological connectivity. Vertical connectivity, in partic-

ular, links freshwater ecosystems over large areas, as

rainfall over any river basin depends on evapotranspira-

tion by vegetation elsewhere. Maintaining freshwater

ecosystems in large tropical river basins thus requires

moving beyond the traditional catchment-based

approach and managing forest cover over large areas to

avoid negative land-climate feedbacks.

As drivers of hydrological alterations advance from

southeastern tributaries into southern and western

tributaries, geographic differences in hydrology, geo-

morphology, and water chemistry will likely determine

different ecological impacts. The cumulative ecological

impacts will also depend on the mix of drivers found in

each basin, as they interact in complex ways. For exam-

ple, climate and land-cover changes can degrade forests

and associated streams and rivers through synergistic

effects (Brando et al., 2014). On the other hand,

increases in discharge associated with local forest loss

could be partially offset by reductions in discharge due

to dam reservoirs (Petts, 1984; Bruijnzeel et al., 1990).

Ecological impacts will thus be heterogeneously dis-

tributed throughout the Basin, requiring intensive

study across many tributary basins.

The ecological impacts of hydrological alterations

encompass ecosystem processes ranging from hydrol-

ogy and geomorphology to biotic composition, energy,

and carbon flows. Impacts on any one of these have the

potential to trigger cascading effects that can signifi-

cantly degrade these freshwater ecosystems. If current

trends continue, more tributary basins will be

degraded, compromising ecosystem services such as

biodiversity maintenance, water quality, flow regula-

tion, C cycling, and food production (Fig. 3). In the face

of these threats, the fate of Amazon freshwater ecosys-

tems depends on a weak and fragmented set of policies

that is wholly insufficient to address the growing array

of impacts.

Managing hydrological connectivity

Maintaining the integrity of Amazon freshwater ecosys-

tems requires a research and policy framework to

understand and manage the drivers of hydrological

alteration in aquatic, terrestrial, and atmospheric sys-

tems. A basinwide management framework for the

Amazon could be developed through multiple-use zon-

ing strategies that integrate various uses of aquatic and

terrestrial resources across multiple watershed scales

(Castello et al., 2013b). Existing management efforts

focused on collaborative partnerships and stakeholder

involvement are promising first steps toward such a

framework (McGrath et al., 2008; Nepstad et al., 2014).

The knowledge gaps identified here offer direction for

future research efforts. Many of the existing policies, if

revised to address their deficiencies, could form the

basis for a unified framework for conserving the hydro-

logical connectivity of freshwater ecosystems.

Development and implementation of a unified frame-

work could build on the principles established by the

European Union Water Framework Directive, which

was developed around ecosystem-based objectives after

decades of failed experiences through disjointed poli-

cies (Kallis & Butler, 2001). The process of constructing

such a framework could begin with tributary basins

within countries and scale up to encompass the whole

Amazon Basin. The framework could ultimately be

implemented by a new institution, or integrated into

the objectives of existing pan-Amazonian institutions

such as the Amazon Cooperation Treaty Organization

(ACTO) or the Union of South American Nations
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(UNASUR). Its effectiveness would be strengthened if

Amazonian countries ratify the UN Watercourses Con-

vention, which aims to ‘ensure the utilization, develop-

ment, conservation, management and protection of

international watercourses’ (Rieu-Clarke et al., 2012).

The history of Amazonian conservation suggests that

collecting and disseminating sound environmental mon-

itoring data is a crucial first step toward management.

Regular satellite-based monitoring of forest cover has

fstered public awareness and policy developments,

enabling the improved enforcement of regulations and

significant reductions in deforestation rates that have

been observed in recent years. We suggest that satellite-

based measurements provide the most practical

approach to monitoring Amazon freshwater ecosystems,

as they are the only data source that permits basinwide

inferences about hydrological connectivity and freshwa-

ter ecosystem integrity over time. Although satellite

records cannot directly measure water quality or compo-

sition of biotic communities, they can provide useful

proxies for ecosystem integrity when combined with

other data sources. Radar data have been used to map

inundation extent and habitat structure of wetlands in

the Amazon (Hess et al., 2003). Newer sensors (e.g.,

ALOS-2) could be used to monitor the volume, variabil-

ity, and timing of water flows, allowing detection of

hydrological alterations over time. Given that seasonal

and interannual variability in hydrological connectivity

is the norm in freshwater ecosystems, such indicators

would have to focus on metrics of interannual and sea-

sonal variability (i.e., the variability of the variability).

Recent advances in curbing deforestation are laudable,

but they have been largely due to interventions at the

local scale, informed by satellite-based monitoring.

Managing hydrological alterations in the Amazon will be

more difficult. It will require basinwide management

arrangements and monitoring of hydrological connectiv-

ity over vast areas. Metrics of hydrological connectivity

will need to be linked to human development activities

to determine their full ecological impacts, which often

interact in complex ways and accumulate as water flows

downstream. Such metrics will need to be developed in a

way that is understandable and responsive to large con-

stituencies and can evaluate cumulative changes over

huge geographic areas. This scale of environmental man-

agement complexity is unprecedented globally.

Fortunately, public awareness about the impacts of

ongoing hydrological alterations (e.g., dams, droughts,

and deforestation) is increasing, building the social

momentum necessary to begin managing hydrological

connectivity. Although the challenge is enormous, a

basinwide management framework with a focus on

hydrological connectivity would maintain ecological

functions that are critical to both aquatic and terrestrial

ecosystems in the Amazon and beyond. It can thus pro-

vide more benefits than management frameworks

focused on terrestrial ecosystems.
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