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Efforts to mitigate climate change through the Reduced Emissions
from Deforestation and Degradation (REDD) depend on mapping
and monitoring of tropical forest carbon stocks and emissions over
large geographic areas. With a new integrated use of satellite
imaging, airborne light detection and ranging, and field plots, we
mapped aboveground carbon stocks and emissions at 0.1-ha re-
solution over 4.3 million ha of the Peruvian Amazon, an area twice
that of all forests in Costa Rica, to reveal the determinants of
forest carbon density and to demonstrate the feasibility of mapping
carbon emissions for REDD. We discovered previously unknown
variation in carbon storage at multiple scales based on geologic
substrate and forest type. From 1999 to 2009, emissions from land
use totaled 1.1% of the standing carbon throughout the region.
Forest degradation, such as from selective logging, increased re-
gional carbon emissions by 47% over deforestation alone, and
secondary regrowth provided an 18% offset against total gross
emissions. Very high-resolution monitoring reduces uncertainty in
carbon emissions for REDD programs while uncovering fundamen-
tal environmental controls on forest carbon storage and their
interactions with land-use change.

deforestation | forest degradation | Peru | Reduced Emissions from
Deforestation and Degradation | United Nations Framework Convention on
Climate Change

Between 10% and 15% of global carbon dioxide emissions
originate from deforestation and degradation of tropical for-
ests (1, 2). Emblematic of these emissions, the southwestern Per-
uvian Amazon is undergoing carbon changes via road building,
mining, timber extraction, and farming. Meanwhile, the United
Nations Framework Convention on Climate Change is working
to develop a program to curb carbon emissions via the pro-
gram for Reduced Emissions from Deforestation and Degrada-
tion (REDD) (3, 4). REDD has the potential to connect carbon
emitters with governments positioned to reduce forest carbon
losses through monetary compensation. In addition to offsetting
emissions, REDD could provide indirect support for biodiversity
conservation through reduced habitat loss, thus providing a unique
solution to the longstanding tension between conservation inter-
ests and other land-use needs in tropical forest regions such as the
Peruvian Amazon.

There are many challenges to making REDD work, and map-
ping forest carbon stocks and emissions at the high resolution
demanded by investors and monitoring agencies remains a tech-
nical barrier. Satellite remote sensing offers a practical means to
monitor forest cover (5, 6), but has not provided high-resolution
estimates of carbon emissions (7). In contrast, field plots pro-
vide effective localized estimates of forest carbon stocks, but
natural variation in forest carbon density may render plot-based
approaches ineffective for estimating carbon over large areas.
Furthermore, although plot-based studies are needed for long-
term monitoring of forest dynamics, they are time-consuming and
are usually placed to avoid land-use change, which is the main
anthropogenic factor responsible for carbon flux to the atmo-
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sphere in tropical forests. New approaches are critically needed to
extend the role of field plots to capture regional variation and to
bridge a major gap between field and satellite observations.

One new approach is airborne light detection and ranging
(LiDAR), which, when used with field calibration plots, is ca-
pable of estimating aboveground forest carbon densities (in units
of Mg C ha™) (8). However, airborne LiDAR has not been
proven for carbon mapping of high diversity Amazon forests, and
a key obstacle to large-scale use of LIDAR for REDD moni-
toring is its relatively high cost of operation and small geographic
coverage. However, combined with a strategic use of satellite
data, airborne LiDAR may yield cost-effective, high-resolution
maps of forest carbon stocks and emissions (9). This potential
has never been realized at large geographic scales that would be
pertinent to an international REDD program.

Here we report on a study to apply a new multiscale, multi-
temporal method to analyze carbon stocks and emissions through-
out 4.3 million ha of lowland Amazon forest in the Department of
Madre de Dios, Peru, as a procedure for achieving national-scale
REDD mapping while assessing determinants of biomass stocks at
a large geographic scale. Although subnational within Peru, the
study area is equivalent to twice that of Costa Rica’s forests, and
our study was designed with a survey size that is logistically easy to
implement multiple times to achieve necessary coverage for larger
nations. The Madre de Dios region has undergone relatively
moderate land-use change throughout the past century. However,
paving of the Interoceanic Highway since 2006, along with new
timber concessions and an influx of artisanal gold miners during
the past 5y, has rapidly increased land-use pressure. In this con-
text, we sought to understand the sources of spatial and temporal
variability in carbon stocks and emissions throughout this large
and rapidly changing region of the Amazon basin. Our approach
involves multiscale steps ranging from automated satellite map-
ping of deforestation and degradation to airborne LiDAR map-
ping to local-scale plot calibration measurements. The approach
provides high-resolution maps of aboveground carbon densities
and a retrospective mapping of carbon emissions based on current
carbon densities and past forest cover changes (SI Materials
and Methods).

Results and Discussion

Airborne LiDAR data yielded forest canopy height, underlying
terrain, and canopy vertical profile, providing a comprehensive,
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Fig. 1. Sources of variation in forest canopy height detected with high-resolution Carnegie Airborne Observatory LiDAR in the Peruvian Amazon: (A) ar-
tisanal gold mining; (B) selective logging; (C) deforestation for cattle ranching; (D) infrastructural development in towns, cities, and supporting land uses; and
(E) alluvial and geologic substrate. White bars indicate a distance of 0.5 km in each example image.

regional inventory of both human-mediated and natural varia-
tion in Amazon forest canopy structure. Snapshot areas of 8,000
to 50,000 ha in size are shown in Fig. 1, each indicative of a
major source of variation in canopy structure and carbon stocks
throughout the region. Gold mining spans large areas of lowland
swamp forest, leaving bare surface scars of up to 20 km in length
with almost no remaining tree cover (Fig. 14). Degradation from
selective logging results in a spatially diffuse decrease in canopy
height in otherwise intact forest (blue areas of Fig. 1B). Farming,
cattle ranching (Fig. 1C), and infrastructural development (Fig.
1D) are major drivers of deforestation, leaving mosaics of de-
pleted carbon stocks with diffusely scattered tree cover along
roadways and in clearings. Finally, by virtue of being regional-
scale, the data allowed us to assess gradients in forest structure
mediated by geomorphic and fluvial processes (Fig. 1E).
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During LiDAR overflights, a small, tactically placed network of
field plots was established to convert LIDAR metrics of forest
canopy structure to aboveground carbon density (Fig. S1). Exten-
sive field validation, including both new and previously published
estimates from field plots in the region (10, 11), indicated a
LiDAR-to-carbon measurement correlation of 92% (Figs. S4-S6).
Absolute mapping uncertainties were 23 Mg C ha™" at 0.1 ha res-
olution, but decreased to just 5 Mg Cha™', or approximately 5% of
the mean standing forest biomass stock, when the mapping results
were integrated to 5 ha resolution (Figs. S7 and S8).

Application of LiDAR-based carbon statistics to forest type
and condition maps derived from satellite data (SI Materials and
Methods) yielded a 0.1-ha resolution map of aboveground carbon
density throughout the 4.3 million ha region (Fig. 2). Total re-
gional carbon storage was 395 Tg (million metric tons), and three

Asner et al.
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Fig. 2. Variation in aboveground carbon storage at 0.1 ha resolution throughout a 4.3 million ha region of the Peruvian Amazon, derived from an integrated
use of CLASIite, LIDAR and field-plot data. Examples of (i) artisanal gold mining, (ii) selective logging and other forest disturbances, and (iii) deforestation for

cattle ranching, road building, and other infrastructure are indicated.

major sources of variation in forest carbon were uncovered. First,
we found a broad regional partitioning of standing carbon stocks
mediated by geologic substrate (12, 13). To the north, older ter-
tiary substrates support carbon densities with median values
ranging from 85 to 100 Mg C ha™', whereas more fertile and flat
Holocene alluvial surfaces in the central-east support 110 to 125
Mg C ha™'. To the southwest, forests at the base of the Andes on
Cretaceous surfaces maintain carbon densities in the range of 65
to 80 Mg C ha™" (¢ test comparisons on randomly selected sub-
sets, P < 0.001).

Stepping down in geographic scale from geologic controls, we
uncovered enormous variation in standing carbon within and
among forest types (Fig. 34 and Fig. S9). Median carbon density
values were unique between forest types in most cases (P < 0.001;
Fig. 2), but the highly varying distributions were the most re-
vealing of ecological controls (Fig. 34). Upland terra firme forests
on low hills maintain the highest and widest range of carbon
stocks, whereas inundated swamp areas with often monotypic
palm cover are confined to a lower and narrower range of carbon
storage conditions. Still wetter swamp forests with a dense shrub
layer harbor even lower and narrower distributions of carbon.
Areas that undergo periodic disturbance, such as floodplain for-
ests and river edges, have highly skewed, multimodal distributions
of carbon density, indicating a patch mosaic of distinct succes-
sional states. Finally, areas codominated by hardwood species and
bamboo also show a bimodal distribution of carbon states.

Asner et al.

Against this backdrop of geological and ecological control on
carbon storage, the most pronounced, localized sources of carbon
variation are deforestation, degradation, and secondary regrowth
(Fig. 2). Although only 5% in geographic extent (Table 1), arti-
sanal mine sites contain the lowest carbon densities among all
land-use scenarios, just 16.7 + 18.3 (SD) Mg C ha™". Selective
logging and other forms of forest degradation are common, es-
pecially to the north, and account for 27% of the pixel-by-pixel
changes in forest cover during the study period (Table 1). Forest
degradation is diffusely distributed over large areas, but the
individual pixels impacted within these areas support carbon
stocks of only 35.6 + 15.4 Mg C ha™', which is approximately 70%
lower than background forest levels. Deforestation accounted for
nearly 68% of forest loss throughout the region from 1999 to 2009.
However, we found that deforestation results in a wide range of
residual carbon stocks on the land: areas averaging 20% tree cover
maintain 15.9 + 32.8 Mg C ha™', whereas those maintaining at
least 60% cover support 61.4 + 56.2 Mg C ha™ (Fig. S10).

Integrating historical deforestation and degradation results
(Figs. S2 and S3) with 2009 carbon stocks (Fig. 2), we calculated
annual gross aboveground carbon emissions from 1999 to 2009
(Fig. 3B). Results show a baseline emission rate for 1999 to 2006
of 0.26 + 0.08 Tg C yr~! from deforestation and 0.11 + 0.02
Tg Cyr~" from degradation, for a sum of 0.37 Tg C yr~". Paving of
the Interoceanic Highway since 2006, combined with new timber
logging concessions and gold mining, caused an increase in de-

forestation emissions by more than 61% to 0.42 +0.21 Tg C yr™",
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Fig. 3. (A) Distributions of aboveground carbon storage for the seven
common forest types found in the Peruvian Amazon, derived from airborne
LiDAR. (B) Annual emissions of carbon from deforestation and degradation
mapped from time-series CLASlite imagery and LiDAR data.

whereas degradation emissions doubled to 0.21 + 0.11 Tg Cyr™"

(Fig. 3B). Critically, we found that degradation emissions aver-
aged 47% of deforestation emissions (annual range, 22%—-68%)
during the 11-y study period, both before and during the recent
increase in human activity throughout the region. In total, 4.529
Tg of aboveground carbon were committed to the atmosphere
from 1999 to 2009, representing approximately 1.1% of the
standing stock of forest carbon in the region.

Secondary forest regrowth, defined here as forests reestab-
lished following any deforestation and degradation that occurred
between 1999 and 2008, covered 24,823 ha in the study region,

representing 38% of the total human-affected area by 2009 (Table
1). Forest regrowth resulted in a range of carbon densities (24-44
Mg C ha™") based on forest ages of 2 to 11y (SI Materials and
Methods). Nonetheless, the carbon density of secondary forest is
30.6 + 16.7 Mg C ha™, or approximately 60% to 70% lower than
the average carbon stocks for intact forests in the region. Inte-
grated over the 11-y study period, secondary regrowth accumu-
lated 0.812 Tg C, providing an 18% offset to gross emissions that
resulted in a net regional loss of 3.717 Tg C to the atmosphere.

Our results uncover multiple spatial scales of variation in car-
bon stocks throughout the region, and change our understanding
of how forest carbon is distributed and subsequently altered by
land-use change in the southwestern Amazon. To our knowledge,
this is the first study to detail regional-level variation in forest
carbon densities mediated by geologic substrate and forest type
(Figs. 2 and 34). We also detected an interaction between geo-
logical controls on carbon storage and land-use effects on carbon
emissions: deforestation emissions dominated the flatter quater-
nary substrates that are easier to access for road-building and
farming. In contrast, degradation emissions from selective logging
occurred mostly on eroded tertiary surfaces that are topograph-
ically dissected and difficult to access (Fig. 2).

The observed trend of increasing carbon emissions since 2006
following the development of the Interoceanic Highway is pre-
viously unmeasured (Fig. 3B), but more revealing is the large
contribution of degradation to the total annual gross emissions for
the region. Degradation added an average of 47% more carbon to
the atmosphere than did deforestation alone, and increased in
step with deforestation during the recent period of heightened
land-use activity in the region. Degradation is diffusely distributed
throughout the forested landscapes of Amazonia and other trop-
ical regions, and only by combining very high-resolution airborne
LiDAR techniques with large-area satellite mapping can these
emissions be quantified and monitored over time.

The detailed statistical distributions of aboveground carbon
density were also previously unmeasured because the majority of
the region remains inaccessible on the ground. However, our
airborne measurements reveal highly skewed, often multimodal,
distributions of forest carbon. As a result, we contend that sam-
ples of forest carbon storage obtained with field plots, cannot
account for the spatial variation in carbon stocks, especially in the
context of the mosaic of anthropogenic land uses and resulting
carbon emissions.

In support of REDD, the Intergovernmental Panel on Cli-
mate Change (IPCC) (14) issued a default tier-I estimation ap-
proach of forest carbon density based on average carbon values
assigned for biomes. Applying the IPCC tier-I method to our study
region produced an estimated 587 Tg C in aboveground biomass,
whereas our spatially explicit mapping indicated just 395 Tg C
(Fig. 2). This difference results primarily from the fact that forest
carbon densities are not homogeneous at a variety of scales. Al-
though our regional carbon estimates are 33% lower than IPCC
tier-1 estimates, the high-resolution, verifiable nature of our ap-

Table 1. Area of new land use and forest regrowth integrated from 1999 to 2009

Proportion of human- Mean (SD) carbon

Land use Total area, ha affected area, % density, Mg C ha™’
Gold mining 3,207 4.9 16.7 (18.3)
Forest degradation* 17,740 27.3 35.6 (15.4)
Deforestation® 43,933 67.7 27.8 (16.9)
Secondary regrowth® 24,823 38.3 32.7 (7.5)

Mean aboveground carbon densities are reported for 2009.

*Forest degradation is dominated by selective logging in this region.
"Deforestation is dominated by clearing for cattle ranching and farming in this region.
*Regrowth calculated from deforestation and disturbance mapped between 1999 and 2008.
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proach would likely yield increased investment per unit of carbon
(15, 16). At the national scale, most tropical countries will rely
initially on tier-I methods, which will generate large uncertainties
and lower confidence, and thus potentially lower carbon credits (4,
15, 17). Developing monitoring capacities at higher accuracies—
using procedures like those demonstrated here—will ultimately
provide increased carbon credit, boosted carbon sequestration,
and improved biodiversity protection.

The cost to implement this method of high-resolution carbon
stock and emissions monitoring is decreasing. Satellite data costs
are decreasing, and the major data sources are now free of charge
to end users. The cost for analyzing the satellite data for forest
cover, deforestation and degradation is also rapidly diminishing.
The Carnegie Institution is making its Landsat Analysis System
Lite (CLASlite) available for free to noncommercial organiza-
tions throughout the Amazon region (http:/claslite.ciw.edu).
LiDAR is a powerful airborne imaging technology that, like aerial
photography in the 1970s and 1980, is rapidly expanding through-
out the world for use across a range of environmental sectors. There
are now many airborne LiDAR mapping companies operating
in the Americas, Europe, Africa, Asia, Australia, and the Pacific
(http://www.airbornelasermapping.com). For this 4.3 million ha
analysis, the Carnegie Airborne Observatory (CAO) operated its
LiDAR, processed the data, and provided maps of forest structure
at a cost of less than $0.08/ha. More recent work in Madagascar
has reduced the cost to approximately $0.06/ha, and there exists
a strong economy-of-scale effect whereby larger-area projects prove
far more cost effective than small-area analyses. This runs opposite
to plot-level work, which increases in cost on a per-area basis.

Finally, the procedure tested here can be scaled up to the na-
tional level. We selected this particular 4.3 million ha area for
a variety of scientific purposes. The results can be directly ex-
trapolated with the addition of highly available satellite imagery
and CLASIite, and with no additional airborne or ground-based
work, to an area of approximately 60 million ha based on the range
of forest types found in Peru. However, the uncertainty in the
regional variation of carbon densities applied to such a full
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national-scale satellite map would be reduced with additional
LiDAR sampling throughout the region. Here we have reported
the results of high-resolution mapping of carbon stocks and
emissions in the Amazon region, and the approach is being im-
plemented by three western Amazon countries.

Materials and Methods

Our approach involves four steps: (/) regional mapping of vegetation type
and condition (forest cover, deforestation, degradation, regrowth) using
moderate-resolution satellite data; (ii) regionally stratified large-area sam-
pling of vegetation canopy 3D structure using airborne LiDAR; (iii) conver-
sion of LIDAR vegetation structural data to aboveground carbon density
using LiDAR allometrics developed at a limited number of field plots; and (iv)
integration of the satellite maps with the calibrated LiDAR data to set a re-
gional, high-resolution baseline carbon estimate, and mapping of carbon
emissions retrospectively and into the future.

Forest condition—including deforestation, degradation, and regrowth—
was assessed using the CLASlite (18) satellite mapping system with 30-m
Landsat imagery in nearly annual time steps from 1999 to 2009 (Figs. S1-S3).
Field validation surveys indicated that 2009 deforestation, degradation, and
secondary regrowth maps had errors of 0% to 1.2%, 1.9% to 6.4%, and
2.6% to 2.9%, respectively (Tables S1 and S2). A map partitioning the study
area into 26 vegetation classes, combined with CLASIite results, was used to
locate 27 LiDAR survey areas covering a total of 514,317 ha for collection at
a spatial resolution of 1 m or less throughout the 4.3 million ha region (Fig.
S1). The LiDAR data were collected using the CAO (19). Calibration and
validation of the airborne- and satellite-based estimates of aboveground
carbon density were carried out during the overflights. Detailed information
on each of these steps is provided in S/ Materials and Methods.
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S| Materials and Methods

Overview of Approach. Our approach supports IPCC (1) tier-II/IIT
baseline assessments via high-resolution aboveground carbon
stock and emissions mapping (Fig. S1). Five major steps are
involved: (i and ii) regional mapping of vegetation type and
condition (forest cover, deforestation, degradation, regrowth)
using moderate-resolution satellite data; (i) regionally stratified
large-area sampling of vegetation canopy 3D structure using
airborne LiDAR; (iv) conversion of LIDAR vegetation structural
data to aboveground carbon density using LiDAR allometrics
developed at a limited number of field plots; and (v) integration
of the satellite maps with the calibrated LIDAR data to set
a regional, high-resolution baseline carbon estimate, and map-
ping of carbon emissions over time.

The first step involves the acquisition and/or development of
a map depicting major vegetation types (Fig. S1A4). In recent
years, many such maps have become available at national and
subnational levels. Some of these maps are derived from satellite
data; others are created from a combination of aerial photography
and field surveys. A map of forest types aids in partitioning a re-
gion into categories for subsequent airborne and field measure-
ments. The more detailed the map, the more finely the landscape
can be partitioned for biomass sampling. We used the official
forest map provided by the Peruvian Ministry of Environment
(Ministerio del Ambiente; MINAM), which had 26 vegetation
classes. The map coverage extent was 4,369,972 ha, defining the
overall study region.

We used CLASIite (http://claslite.ciw.edu) to extend the gen-
eric MINAM vegetation map to include current forest conditions
(Fig. S1B). Maps of deforestation and degradation were compiled
with an historical analysis of Landsat 5 Thematic Mapper and
Landsat 7 Enhanced Thematic Mapper Plus (ETM+) imagery
for the years 1999 to 2001, 2003, and 2006 to 2009. We first
created a map of regional forest cover in 2009. Forest/nonforest in
this year was mapped automatically using the CLASlIite software
in single-image analysis mode (2). CLASlite uses a combination
of atmospheric correction, spectral mixture analysis, and deci-
sion tree analysis to map forest cover at 30 m spatial resolution
when using Landsat Thematic Mapper or ETM+ imagery. Using
CLASlite in multiimage analysis mode (2), we then mapped gross
deforestation and degradation in each of seven time steps (1999—
2000, 2000-2001, 2001-2003, 2003-2006, 2006-2007, 2007-2008,
and 2008-2009). CLASIite detects and maps deforestation ac-
cording to the algorithms detailed by Asner et al. (2). Here we
define degradation as a diffuse thinning of or disturbance to forest
cover, and CLASIite has algorithms for detecting this disturbance
uniquely from wholesale deforestation (2). For this study, we also
passed a 3 x 3 (90 m) median filter over the CLASIite degradation
output, which removed single, isolated pixels that would represent
natural treefall events. To ensure that final maps reflected accurate
stages of regrowth in 2009, forest change maps were prioritized
through the 10-y period, by year, to count only the most recent event
of forest change. These CLASIite steps yielded final maps of for-
est cover and nonforest cover with deforestation, degradation, and
forest regrowth by year for the period 1999 to 2009 (Figs. S2 and S3).
CLASIite maps of deforestation, degradation, and regrowth were
field-tested as described in a subsequent section.

After spatially integrating the MINAM and CLASlIite maps, the
region was stratified into LIDAR mapping units (Fig. S1C). The
extent of airborne LiDAR required to accurately characterize
carbon stocks among vegetation types throughout a given map-
ping region will depend on the relative proportions of each veg-
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etation type and the likely variation of carbon densities within
each type. Based on minimum sampling trials undertaken for
other forests, we strived to achieve at least 1% LiDAR coverage
of each vegetation class with and without forest degradation.
However, based on other scientific interests, we exceeded the
minimum coverage by mapping 1.5% to 33.9% of most vegetation
classes (Table S1). Three exceptions resulted in less than 0.5%
coverage per vegetation class, but these classes represented less
than 1% of the study area. Two classes—forest on low hills with
rubber tree stands and forest on medium terraces with swamped
area—were aggregated into two larger vegetation classes: forest
on high hills with rubber tree stands and forest on medium ter-
races, respectively, based on input from MINAM biologists.

The CAO (http://cao.ciw.edu) collected the LIDAR data used
in this study. The flights were conducted in two modes: (i) high-
resolution (1,000 m above ground level, 0.5-m LiDAR spot
spacing, 22° field of view, 70-kHz pulse repetition frequency) and
(ii) low-resolution (2,000 m above ground level, 1.0-m LiDAR
spot spacing, 28° field of view, 50 kHz pulse repetition fre-
quency). For both flight modes, the aircraft maintained a ground
speed less than 95 kn. LiDAR spatial error is less than 0.15 m
vertically and less than 0.36 m horizontally [rms error (rmse)]
(3). Flights were planned to sample forest (and other) vegetation
using parallel flight lines with 50% overlap to ensure full and
consistent coverage. The total LIDAR coverage was 514,317 ha
or approximately 12% of the study area.

Following airborne LiDAR sampling, the mapped canopy 3D
structural information was used to estimate aboveground carbon
density (in Mg C ha™'; Fig. S1D). This step requires a set of
LiDAR metrics. Ground-based allometric equations have been
used for decades to estimate aboveground biomass from field
measurements of tree diameters, tree height, and wood density
(4, 5). In contrast, LIDAR metrics are new; they relate airborne
measurements of forest 3D structure, including height and the
vertical canopy profile, to field-based estimates of aboveground
biomass. Whereas the basic LiIDAR data are typically collected at
a spatial resolution of 0.5 to 1.0 m, LIDAR metrics are averaged
at the plot level and subsequently regressed against plot-level
aboveground carbon stock estimates. This approach parallels
traditional field studies that use manual measurements of the
diameter and height of each tree to estimate plot-level C stocks.
Details on LiDAR-to-carbon metrics are provided in a sub-
sequent section.

Output from the LiDAR mapping step includes estimates of
aboveground carbon density at 0.1-ha resolution, along with error
values derived from uncertainty in the LiDAR-to-C conversion
equations used. The final step involved developing statistical
distributions of aboveground carbon densities for each MINAM
vegetation class, in areas with and without forest degradation, as
well as deforested areas and areas of secondary forest regrowth
(Fig. S1E). The median carbon value of each distribution by class
was then applied to the integrated MINAM-CLASIite maps
through time (1999-2009). A final step included scaling the car-
bon values by the amount of canopy opening (or loss) derived
from the fractional canopy cover mapping step of CLASlite, de-
tailed by Asner et al. (6, 7) and described in a subsequent section.

Validation of Forest Cover, Deforestation, Degradation, and Regrowth.
Forest cover, deforestation, degradation, and regrowth maps re-
presenting 2009 conditions were validated using a combination of
methods. The high-resolution airborne LiDAR and hyperspectral
imagery from the CAO provided more than 500,000 ha of vali-
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dation imagery at 0.5 to 1.0 m spatial resolution. These data were
used to assess forest cover and degradation caused by logging and
other small-scale human activities in forests. A survey was done by
overlaying the CAO imagery onto the CLASIite (Landsat) im-
agery and manually delineating differences in forest cover and
degradation between the two data sources. As the CAO data
provide tree-level spatial resolution, we treated these data as
“truth.” Any discrepancies, in terms of false-negatives or false-
positives, between the CAO and CLASIlite imagery were then
digitally marked and tabulated. This step yielded an estimated
error rate of 11.5 Landsat pixels per 10,000 pixels (0.115% error)
for forest cover, and these were about equally distributed among
false-positive and false-negative forest detections. Some ex-
ceptions included areas of active deforestation, where the offset
in time between Landsat and CAO overpasses allowed for forest
clearing to occur. The error rate for degradation averaged 154
Landsat pixels per 10,000 pixels, or 1.54%, in areas of selective
logging. Error rates appeared slightly higher (2%-3%) in areas
near towns where human activities are more pronounced; we
could not assess the cause of these errors but assumed they were
again caused by offsets in the time of Landsat and CAO imaging.

A second validation technique involved field-based surveys of
deforestation and degradation from the 2008-2009 time period, as
well as regrowth from the period fro 2000 to 2009. These field-
based surveys used roads, trails, and rivers to digitally mark false
positives and false negatives using a tablet computer system with
integrated global positioning system (iX104C4; Xplore Technol-
ogies). The surveys were undertaken outside of the LIDAR cov-
erage, but within the CLASIlite image coverage. For practical
purposes, degradation was considered as any loss of forest canopy
in a single pixel otherwise immediately surrounded by remaining
forest cover. In addition, a new handheld data collection/cellular
telephone technology with integrated cameras and global posi-
tioning system was used to collect detailed information about
forest cover, composition of forested and cleared areas, and
other ancillary data. These units use the Open Data Kit software
tools (http://code.google.com/p/open-data-kit/) to collect, orga-
nize, and map field data directly into the CLASlIite imagery. The
results of these surveys are provided in Table S2. Errors for 2009
forest cover and 2008-2009 deforestation ranged from 0% to 1.8%.
Uncertainties in 20082009 degradation and 2000-2009 regrowth
were 1.9% to 6.4% and 2.6% to 2.9%, respectively. Thus, all error
levels were small and well within the tolerable limits for mapping
carbon stocks and emissions at the regional level.

LiDAR Calibration Using Field Plots. There are multiple ways to re-
late LIDAR measurements to aboveground carbon density. Lefsky
et al. (8) derived LIDAR metrics for three temperate and boreal
forest biomes. As a result of high structural complexity and can-
opy stratification, tropical and subtropical ecosystems have posed
a greater challenge. Although equations were developed by
Drake et al. (9) for moist and wet tropical forests, they used
a large-footprint LIDAR technology unique to NASA’s research
program. Asner et al. (10) derived equations relating airborne,
small-footprint LiDAR metrics to carbon densities for lowland,
submontane, and montane tropical forests. However, regional
variation in wood density, stem diameter, and the number of trees
per unit area creates regional variation in the LiDAR-to-carbon
relationship. As a result, field plots are needed to calibrate the
relationship between LiIDAR metrics and aboveground carbon
stocks for different forests (11). Field plots can be set up any-
where within the LiDAR coverage area, but should span a range
of apparent carbon levels and forest types. The number of field
plots required to create a reliable LIDAR-to-carbon relationship
is a focus of intense research, and thus we provide detailed
analysis of our findings here. If the time-consuming process of
placing field plots can be reduced in scope to the role of LIDAR
calibration, then the LIDAR becomes the regional sampling tool,
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mapping thousands of hectares per day in a way that is un-
achievable with field plots.

Field plots. To calibrate LIDAR metrics of aboveground carbon, we
established 131 large field plots (radius 30 m, area per plot 0.2827
ha, total area 37 ha), and 37 small field plots (radius 3 m, area per
plot 28.27 m?, total area 1,046 mz) distributed among 10 common
vegetation classes in the study area. Within each large plot, we
measured the diameter of all living and standing dead stems
larger than 10 cm. Trees and palms were included if at least 50%
of the base occupied the plot, whereas lianas were included if they
crossed a plane at 1.3 m in height above the plot footprint as they
ascended into the canopy. Accounting for lianas crossing the
plane of 1.3 m in height allows for more rapid assessment without
differences in density or basal area measurements (12). All trees
were measured at 1.3 m height or above buttress. When an above-
buttress measurement could not be obtained by hand, a digital
photograph was taken and the tree diameter estimated by com-
paring the pixel width of the tree to a 1-m reference placed in the
photograph (13). Within a one-eighth section of each large plot
(northwest to north), we also measured the diameter of all living
and standing dead stems at least 5 cm. Within each small plot, we
harvested all living and standing dead aboveground vegetation
smaller than 10 cm in diameter and weighed it in the field using
spring scales.

Estimation of aboveground carbon stocks. We estimated aboveground
carbon stocks in the large plots using allometric models. We first
accounted for dead trees and nontree growth forms, such as palms,
bamboo, and lianas, by using growth form-specific allometric
models (Table S3). We measured the height of all palms and dead
trees using laser range finders. For all other individuals, we used
a generalized allometric model from Chave et al. (5), which, in
addition to diameter, requires inputs of wood density and height.
We identified 98.2% of living stems to genus, and obtained
a genera-specific wood density estimate from a global wood den-
sity database for 91.4% of living stems (data available upon re-
quest). Although identification to species can improve wood
density estimation, Baker et al. (14) found that genera-level id-
entification accounted for 71% of wood density variation in the
tropics. We accounted for height variation using a combination of
direct measurements (with either laser range finders or clin-
ometers) and diameter-based estimation. We measured the height
of the three largest-diameter trees in each plot (e.g., those with
the greatest importance to carbon estimation) as well as seven or
more additional trees in each plot spanning a range of diameters.
These tree height data were used in two ways: (i) measured trees
retained their measured heights for input into the Chave et al. (5)
allometric model, and (if) 1,681 total height measurements were
used for the creation of a diameter-to-height model that was used
to estimate the height of all other trees (Fig. S44). The selection of
a single diameter-to-height model was made after variation in
diameter-to-height relationships by habitat type was found to be
nonsignificant. Within each small plot, we harvested all living and
standing dead aboveground vegetation and weighed it in the field
using spring scales. We collected a representative subsample
(approximately 5% by mass) of the harvested vegetation that was
weighed immediately in the field and oven-dried to constant mass
to correct for moisture content. We multiplied all biomass esti-
mates by 0.48 to estimate carbon content.

Development of LiDAR-to-carbon models. We developed LiDAR-
based models to estimate aboveground carbon separately for
vegetation at least 10 cm in diameter and that smaller 10 cm in
diameter. In each case, we considered models based on three
previously tested LIDAR-based metrics of the vertical profile of
the forest: (i) mean canopy profile height (MCH), (ii) top-of-
canopy height, and (iii ) quadratic mean canopy profile height. For
vegetation at least 10 cm in diameter, all three metrics produced
highly significant LiDAR-to-carbon relationships, but the MCH
was the best overall predictor of aboveground carbon (Fig. S4B).
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To estimate carbon in vegetation less than 10 cm in diameter,

we combined two sets of field plot data: (i) harvest-based esti-
mates of aboveground carbon from the 3-m radius plots, and (i)
allometry-based estimates of aboveground carbon from the one-
eighth subsample in the 30-m radius plots (excluding large plots
with a mean MCH below approximately 13 m, which was the
highest MCH sampled by the small plots). In examining these
datasets, we found that the presence of bamboo stems was not
a factor in aboveground carbon storage for the small plots, but
was a strong factor in aboveground carbon storage in the large
plots. Thus, we created two separate sets of LIDAR-to-carbon
models for vegetation smaller than 10 cm in diameter: one for
bamboo habitat types and one for those without bamboo. As
with larger vegetation, we found that MCH was the best overall
predictor of aboveground carbon in this small size class (Fig.
S4C). Our carbon estimates for vegetation smaller than 10 cm in
diameter excluded stems smaller than 5 cm in diameter for dense
forest (e.g., MCH greater than approximately 13). However, out-
side estimates suggest that the contribution to carbon storage for
stems smaller than 5 cm in diameter in such forests is very low
(15). When the results of the equations were combined to pro-
duce a synthetic relationship between MCH and aboveground
carbon density, we found that the variation in carbon as pre-
dicted by MCH was strongly consistent across all 10 habitat types
sampled (Fig. S54). Thus, LiDAR-derived MCH accounted for
wide variation in forest age, structure, and diversity.
Other allometric models. When one generalized allometric model is
used to estimate the carbon stocks of nearly all trees (as in this
study), the choice of the model to be used has a major influence on
the resulting estimates. To consider this effect, we examined the
range of carbon estimates and LiDAR-to-carbon models that
might be produced if other equations were to be used. We
compared our Chave et al. (5)-based estimates to three other
models (Figs. S5B and S64). A model proposed by Baker et al.
(16) yielded an underestimate compared with the Chave (5)
model, whereas other models proposed by Winrock International
and Chave (model II) (17, 18) produced large overestimates of
carbon stocks. Whereas the primary model used here [Chave
model I (§)] incorporates an independent height variable in the
allometric equation, the models by Baker and Winrock (16, 18)
instead use regional measurements of height to adjust the allo-
metric equation constants. Chave model II (17) uses no height
variable or height variation adjustment. Thus, we used the most
robust model available in that it corrects for height variation of
individual trees. The wide variation among methods with varying
treatments of canopy height suggests that correcting for height is
essential to producing accurate carbon stock estimates (19).
Specifically, forests in the Southwestern Amazon (such as those
studied here) are typically shorter than those in the Central
Amazon, resulting in somewhat lower carbon stocks in above-
ground biomass.

Validation of Remotely Sensed Carbon Stocks. We verified our
LiDAR-to-carbon model for stems at least 10 cm in diameter
using two datasets: (i) 28 additional 0.28-ha plots, and (ii) nine
1-ha plots from the RAINFOR plot network (20), none of which
were used in the calibration phase of the study. The added
0.28-ha plots used an identical methodology. The 1-ha plots are
part of the RAINFOR forest dynamics network and use similar
methodology with two exceptions. First, their allometric model
differed slightly from that used here. However, as with our ap-
proach, tree height and wood density variation were accounted
for based on local patterns. Second, dead trees were not included
in the RAINFOR carbon estimates.

The LiDAR data were a strong predictor of standing carbon
(=10 cm dbh) in the validation plots, explaining 92% of the
variation (Fig. S6B). A regression model fit to the validation
plots alone had a slope that was nearly identical to that of the

Asner et al. www.pnas.org/cgi/content/short/1004875107

original calibration model (Fig. S6C). We note that the strength
of fit was higher than for the original calibration data (+* = 0.86).
In part, the stronger fit of the calibration model to the validation
data may be explained by the inclusion of the 1-ha plots. These
larger plots represent an area larger than three of our 0.28-ha
plots combined. Over this spatial scale, estimation errors in
standing carbon are predicted to average out, resulting in im-
proved regressions (see subsequent section on error analysis).

Error Analyses for LiDAR-to-Carbon Relationships. Spatial propagation
of error in LiDAR data. The primary LiDAR-to-carbon model used in
this study has a SE of estimate (SEE) of + 23.56 Mg C ha™".
However, this error estimate applies to the spatial scale of one of
our field plots (0.28 ha), such that the total uncertainty of carbon
predicted for a new field plot would be + 6.66 Mg carbon. For an
area of interest of larger size (such as any reasonably sized land
holding), the uncertainty depends on the spatial propagation of
the error. Because SEs scale according to the square root of the
sum of squares, total error increases at a slower rate than total
carbon. As a result, the SE (on a per-area basis) for carbon density
estimates decays with increasing sample area.

When adding plot carbon totals and SEs, the total error () for
a given number of plots (n) is given by:

EMg = | /;1 SEEf ) [S1]

If we assume that carbon densities within an area are centered on
the mean carbon density for that area, Eq. 1 can be approximated
as:

emg = SEE(yg * V1 [S2]

If we then let x = sample area (ha) (where x = n * 0.2827 ha), we
produce the following estimation of total error:

vy = 66604+ (=) [S3]

0.2827

Finally, we can readjust to SE on a per-area sampled basis by
dividing by x:

6.6604 + | / (5:3577)

SEEy; = ————— [S4]
T X
The relationship between sample area and per-area SE is one of
precipitous decline in error with increasing sample area (Fig. S7).
Consider a 0.28-ha region of interest (e.g., one of our study
plots) which has a predicted total carbon density of 28.27 Mg
(e.g., 100 Mg C ha™ ). From our LiDAR-to-carbon relationship,
we predict a SE of + 6.66 Mg carbon at this spatial scale.
However, if we double the area of interest (to 0.56 ha), total
carbon increases to + 56.54 Mg, but the total error according to
Eq. 2 is now given by 1/(2*SE?), or 6.66 * 1.41, which is +9.42
Mg carbon. Although the total error increases, the relative error
decreases from 24% to 17%. When corrected for area, the SE
effectively decreases from +23.56 to +16.66 Mg/ha, or by 29%.
Results in Fig. S74 also highlight the fact that, at 5 ha mapping
resolution, the absolute uncertainty in LiDAR-derived carbon
densities diminishes to approximately 5 Mg carbon ha™', which is
just 4% to 5% of the median carbon density of most forest types
throughout the region.

To further demonstrate the spatial propagation of error, we
simulated a doubling of sample area by aggregating our plots and
observing the change in SEE between LiDAR-derived MCH
and aboveground carbon. We ranked all plots according to MCH,
and merged odd-ranked plots with even-ranked plots (1 and 2,
etc.) to create 0.56-ha aggregate plots. We found that whereas the
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slope of the MCH-to-carbon relationship was unchanged, the
SEE declined from +23.56 to +18.25 Mg carbon ha™". This 23%
decline in SEE was close to the 29% we found using the simu-
lation, and reflects the same precipitous decline in SEE with
increasing sample area.

Neither of these exercises considers the error produced by our

equations used to estimate low biomass. However, this error is
very low (+2-3 Mg C ha™") even at the very small spatial scale of
our small plots (28.27 m?). Due to the pattern described earlier,
any error at these low biomass levels would be obscured even
at the minimum spatial scale considered by the large plots
(0.2827 ha).
Number of field plots required for LiDAR calibration. To assess the
sensitivity of the LiIDAR-to-carbon regression to the number of
field plots measured, we tested the variability of the regression
results by randomly leaving multiples of 5% of the samples out of
the regression and calculating the SEE for each resulting regres-
sion equation. We repeated this 1,000 times, with each run removing
and adding back a random set of six field plots. This allowed us to
characterize the error inherent in the model as we produce re-
gression equations with a larger number of samples. Fig. S8 (red
line) indicates that the SEE initially increases as the number of
samples increases in the regression model. It then begins to as-
ymptote at 15 to 20 plots, whereafter adding more plots only
changes the SEE by approximately 1 Mg carbon ha™!. The addi-
tional plots do not significantly add to characterizing the relation-
ship between the LIDAR metric and aboveground carbon stocks.

The predictive power of the regression was then assessed by
calculating the rmse of a set of independent (n = 7) samples,
which were not used in developing the regression equation. We
repeated this analysis 1,000 times with regression models that
increased in sample size from 5% to 95% of the original data set.
Fig. S8 (blue line) indicates an initial rapid decline in rmse from
approximately 28 Mg carbon ha™' when 5% (n = 7 plots) are
used in the regression to approximately 23 Mg carbon ha™! when
20% (n = 24 plots) are used. Thereafter, as the number of plots
is increased, the predictive error only decreases to 22 Mg car-
bon ha™'. This finding concurs with ref. 11, which indicated that
fewer and fewer plots will be needed for LiDAR calibration
in the future as the slope of the LiDAR-to-carbon regression
equation will simply require adjustment to local conditions based
on a tactical (i.e., cost-effective) use of field plots.

Calculation of Regional Carbon Stocks. Combining the MINAM
vegetation map, the 2009 CLASlIite forest condition maps, and
LiDAR-based images of aboveground carbon density (Mg ha™"),
we calculated statistics for each forest type as well as for non-
forest cover and regrowth areas. Nonforest cover, defined by a
CLASIite decision tree based on the 2009 fractional canopy
cover output (2), was further partitioned into four subsets ac-
cording to the fraction of photosynthetic vegetation (PV) in each
nonforest pixel. In this case, PV fraction is an excellent proxy for
partial tree cover remaining in otherwise nonforest (e.g., open
cattle pasture) pixels (21). By applying the LIDAR-based carbon
densities that covered areas of different fractional PV cover in
these clearings, we were able to quantify carbon stocks at dif-
ferent levels of partial deforestation. Regrowth areas were par-
titioned by year of most recent deforestation or degradation.
In most cases, the distributions of carbon stocks were highly
skewed for intact, partially deforested, and regrowing forests (Figs.
S9 and S10). This precluded the use of means and variances to
describe the data or to apply the statistics to the regional map.
Instead, for each forest type, the median carbon density results
from LiDAR survey of each vegetation type were applied to the
combined MINAM and 2009 CLASIlite map at 0.1 ha resolution.
The resulting median map was further processed by integrating
2009 CLASlite fractional canopy cover output, as described in
detail by Asner et al. (6, 7), to up- and down-regulate the median
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carbon density values on a pixel by pixel basis. Regression an-
alysis showed that the fraction of bare soil (from CLASlite
spectral mixture analysis) is inversely correlated with carbon den-
sity values from the LiDAR survey. Therefore, we applied the
equation:

Cpixel = Cmedian * (10 - Barepixel) [S5]

Eq. 5 serves to decrease carbon density from the class median
when woody or herbaceous canopy cover decreases within a pixel.
Practically, this often occurs in the most heavily deforested areas
as well as in areas of maximum forest degradation. Through ad-
ditional analyses of the relationships between CLASlite fractional
cover and LiDAR-based carbon densities, we also found that
a decrease in the amount of standing dead or senescent veg-
etation, known as nonphotosynthetic vegetation (22), from the
modal nonphotosynthetic vegetation value for a given vegetation
class is inversely proportional to carbon density. This inverse re-
lationship is caused by variations in the areal density of tree
crowns that allow for the exposure of surface litter to the satellite
sensor (23), and thus we applied the equation:

Cpixel = Cmedian * [10 + (NPVmode - NPVpixel)] [Se6]

Functionally, Eq. 5 had the largest effects in deforested areas,
with departures from the class median carbon density values by 2
to 25 Mg ha™". Use of Eq. 6 had a smaller effect of 1 to 10 Mg
carbon ha~!, and mostly in forested areas.

Calculation of Carbon Emissions. Carbon emissions from de-
forestation and forest degradation were mapped and compiled
using a combination of 2009 LiDAR-derived aboveground carbon
stocks in standing forest combined with the time-series analysis of
Landsat 5 and Landsat 7 imagery for the years 1999 to 2001, 2003,
and 2006 to 2009. The forest change maps were stratified by the
MINAM vegetation map to determine the annual area affected by
deforestation or degradation. To avoid double counting, forest
change maps were prioritized through the 10-y period, by year, to
count only the first detection of deforestation or degradation. For
example, a pixel classified as deforestation or degradation during
the 1999-2000 time step would not be counted as forest change
in any subsequent year. Any pixel counted as forest change was
assumed to have been intact forest and, as such, was assigned the
median carbon value for its corresponding forest type. For both
deforestation and degradation, we assume that all carbon in the
affected pixel is committed to the atmosphere, which we believe
is reasonable at 30-m spatial resolution, as this approaches the
size of just one to three tree crowns (24). The forest change areas
(in ha) were combined with the median carbon values (Mg ha™")
to calculate gross carbon flux for each time step.

We tabulated annual gross carbon emissions from deforesta-
tion dominated by cattle pastures and farms and degradation
caused mostly by selective logging, gold mining, and secondary
regrowth (Table 1). Areas delineated as deforestation (43,933 ha)
and degradation (17,740 ha) from previous steps were used with
the exception of two large artisanal gold mining areas totaling
3,207 ha. Secondary forest regrowth totaled 24,823 ha, inte-
grated spatially from previous forest losses in the 1999 to 2008
study period.

IPCC Tier-1 Carbon Assessment. The IPCC (1) tier-I approach was
applied to the study area using their prescribed forest carbon
density values combined with suggested land cover data (25). Land
cover type was taken from the Global Ecological Zones according
to the methodology developed for the FAO’s Forest Resources
Assessment 2000 (26). The Global Ecological Zones were then
stratified in a geographic information system by a land cover mask
generated from the globally available land cover dataset, Global
Land Cover 2000 (25, 27). To create the land cover mask, land
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cover data were reclassified as forest or nonforest, using all forest
classes of GLC2000. Aboveground carbon densities were assigned
to each land cover class using IPCC (1) values. The resulting map
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Illustrated flowchart shows outputs of each major step in our analysis. (A) Location and basic vegetation composition of the 4.3 million ha study area
encompassing the cities of Puerto Maldonado and Iberia, Peru, and 25 major forest types. The vegetation map was provided by MINAM. (B) Multitemporal
analysis of Landsat imagery using the CLASIite algorithms to map forest cover, deforestation, degradation, and secondary regrowth. (C) Airborne LiDAR
sampling (red boxes) of the study region based on the combined MINAM-CLASIite maps to cover at least 1% of each forest type. (D) Calibration of 3D
vegetation structural data from LiDAR using a limited number of field plots. (E) Integration of MINAM, CLASIite, and LiDAR data to map aboveground carbon

stocks and emissions over the study area at 0.1 ha resolution.
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Selective logging

nter-Oceanic Hwy

Logging road

Fig. S2. CLASlite results show deforestation and degradation at 30-m resolution; each color represents a different year between 1999 and 2009. The blue
zoom box provides detail showing the spatial patterning of deforestation associated with road building (pasture clearings along the Interoceanic Highway)
and artisanal gold mining. The red zoom box provides an example of the diffuse thinning of the forest caused by selective logging and associated activities.
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Fig. S3. CLASIite results showing forest cover (green), nonforest cover (yellow), and secondary forest regrowth (red) at 30 m spatial resolution, integrated over
the period 1999 to 2009.

Asner et al. www.pnas.org/cgi/content/short/1004875107 8 of 15


www.pnas.org/cgi/content/short/1004875107

Diameter-to-height allometry

Height (m)

[ 50 100 150 200 250

g

a Diameter (cm)

30
{a) Bamboo forest types

25 y= 4.0446058‘7351'L’lnE-O.S'(In(:.’l?.ESSBJII.OGUBiz).')(

Fa027
SEE=325MgCha’
20 ©  3-mradius plots

®  30-m radius plots
15 ° 2
- ®
o "=

Carbon Density (Mg C ha'll

30
Mean Canopy Profile Height (m)
30
(b) Non-bamboao forest types

25 ¥ = 3.6199+36.6959expl-0 5 (Inb/6.96221/0.6767)

o055

SEE=2.25MgCha™
20

©  3-mradius plots
30-m radius plots

Carbon Density (Mg C ha'l)

C: Mean Canopy Profile Height (m)

Aboveground Carbon (Mg C ha'™) Aboveground Carbon (Mg Cha™)

Aboveground Carbon (Mg C ha™")

b.

300

200

100

300

300

(a)
y=0.3531x%%%2

r2=0.85

& s
0 5 10 15 20 25 30 35
Mean Canopy Profile Height (m)

(b)
y = 0.2804x
r2=0.83

18719

0 S5 10 15 20 25 30 35 40
Canopy Height (m)

(c)
y=0.2277x
r2=085

20274

0 5 10 15 20 25 30 35
Quadratic Mean Canopy Profile Height (m)

Fig. S4. (A) Allometric relationship between diameter and height for 1,681 trees measured using either laser range finders or clinometers. At least 10 trees
were measured in each of the 131 30-m radius plots, including the three largest diameter trees in each plot. (B) LiDAR-to-carbon density relationships for
vegetation at least 10 cm in diameter in 131 30-m-radius plots: MCH; canopy height (CH); and quadratic mean canopy profile height (QMCH). (C) LiDAR-to-C
density relationships for low vegetation in bamboo and nonbamboo forest types. Both regressions reflect the combination of 3-m plot data and 30-m plot data

for stems smaller than 10 cm diameter.
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Fig. S5. (A) The relationship between LiDAR MCH and plot-based aboveground carbon density at 0.28 ha resolution for a range of forest types and conditions.
(B) Frequency distributions of plot-based carbon densities depending on the allometric equation used. The Chave | (5) model that we used utilizes direct inputs
of measured or estimated heights of all trees. By contrast, the -Winrock and Baker models (16, 18) use regional height variation to adjust allometric constants
but not a height variable in the equation itself. The Chave Il (17) model lacks height input variables or adjustment for local height variation.
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Fig. S6. (A) Dependency of LiDAR-to-carbon relationships on the allometric model used at the plot level. (B) Variation in validation-plot carbon stocks ex-
plained by the LiDAR-to-carbon model for stems at least 10 cm dbh. Carbon stocks in the 0.28-ha plots were estimated following the same methods used in the
calibration phase, whereas 1-ha plots were contributed by Baker et al. (20) as part of the RAINFOR plot network. See S/ Materials and Methods for an ex-
planation of differing methods used in the RAINFOR plot network. (C) Comparison of the primary calibration model and a second model fit exclusively to
validation plot data.
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Fig. S9. Distributions of aboveground carbon for 18 of 25 forest vegetation classes mapped throughout the 4.3-million-ha study region.
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Table S1. MINAM vegetation classes mapped in the study region and the airborne LiDAR sampling coverage of each
class

Vegetation class Total area, km? LiDAR area, km? Cover, %
Forest on high terraces with Brazil nut stands 10,212.5 643.6 6.3
Forest on low hills with bamboo 7,444.9 409.2 5.5
Forest on low hills 4,770.7 210.7 4.4
Swamp with trees 3,331.1 298.4 9.0
Forest on high terrace with bamboo 3,049.3 183.7 6.0
Human-affected areas 2,861.6 160.3 5.6
Forest on low flood terraces 1,786.8 183.7 10.3
Forest on high terraces with wetland areas 1,637.7 68.3 4.2
Forest on low flood terrace with bamboo 1,040.9 35.1 3.4
Forest on low hills with bamboo and rubber tree stands 1,032.9 39.0 3.8
Swamp forest with palm 786.4 84.4 10.7
Forest plains 774.3 198.4 25.6
Bamboo on low hills 772.7 24.5 3.2
Bamboo on high terraces 758.5 112.0 14.8
Forest on high hills 728.9 17.8 24
Forest on high hills with bamboo 671.8 36.1 5.4
River edges 631.7 82.7 13.1
Forest on medium terrace with bamboo 416.2 11.0 2.6
Forest on medium terraces 369.4 115.8 314
Forest on low hills with rubber tree stands 133.3 0.0 0.0
Forest on high terrace with bamboo and rubber stands 131.7 44.7 33.9
Forest on high terraces with rubber stands 123.0 271 22.0
Beaches and sand banks 56.3 11.3 20.0
Forest on medium terraces with swamped areas 441 0.0 0.0
Bamboo on medium terraces 41.2 0.6 1.5
Bamboo on low flood terraces 38.3 0.2 0.5
Bamboo on high hills 34.0 12.5 36.7
Swamp with shrubs 194 24 12.6

Table S2. Field validation results for forest cover, deforestation, degradation and secondary
forest regrowth in the CLASIlite imagery

No Yes (%)

Deforestation (2008-2009)

Mapped 78 1(1.2)

Not mapped 0 69 (0)
Degradation (2008-2009)

Mapped * 5 (6.4)

Not mapped 1 52 (1.9)
Regrowth (2000-2009)

Mapped * 2 (2.6)

Not mapped 1 34 (2.9)

*included in the deforestation group for no mapped/no field.

Table S3. Equations used to estimate aboveground biomass for 131 30-m radius field plots

Stem type Equation

Mauritia (=0.00006*D3+0.0037*D?-0.0301*D+0.0685)* 1000
Guadua 5.4922*D-19.516

Lianas exp(2.657*In(D)—1.484)

Other palms 7*(0.5*D)?*p*H/10

Dead Trees n*(0.5*D)2*(1.17*p—0.21)*H/10*O.5

Height exp(—0.0716*In(D)2+0.9887*In(D)+0.5685)*1.0244
Chave moist 0.0509*p*D?*H

Fit of the height equation is shown in Fig S4A. Palm and dead tree biomass was estimated using the formula
for volume of a cylinder, corrected for wood density, and in the case of dead trees for trunk taper and decay
typical of standing dead Amazonian trees.
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