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ABSTRACT High-resolution satellite imagery is a promising tool for providing coarse information about
polar species abundance and distribution, but current applications are limited. With polar bears (Ursus
maritimus), the technique has only proven effective on landscapes with little topographic relief that are devoid
of snow and ice, and time-consuming manual review of imagery is required to identify bears. Here, we
evaluated mechanisms to further develop methods for satellite imagery by examining data from Rowley
Island, Canada. We attempted to automate and expedite detection via a supervised spectral classification and
image differencing to expedite image review.We also assessed what proportion of a region should be sampled
to obtain reliable estimates of density and abundance. Although the spectral signature of polar bears differed
from nontarget objects, these differences were insufficient to yield useful results via a supervised classification
process. Conversely, automated image differencing—or subtracting one image from another—correctly
identified nearly 90% of polar bear locations. This technique, however, also yielded false positives, suggesting
that manual review will still be required to confirm polar bear locations. On Rowley Island, bear distribution
approximated a Poisson distribution across a range of plot sizes, and resampling suggests that sampling>50%
of the site facilitates reliable estimation of density (CV <15%). Satellite imagery may be an effective
monitoring tool in certain areas, but large-scale applications remain limited because of the challenges in
automation and the limited environments in which the method can be effectively applied. Improvements in
resolution may expand opportunities for its future uses. � 2015 The Wildlife Society.
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Recent advances in remote sensing technologies and
detection methods are providing new opportunities for
estimating wildlife abundances and distributions. In partic-
ular, researchers are turning to very high resolution (i.e.,
VHR; 0.5–5.0-m pixel size) satellite imagery to assess
populations and the impacts of a changing climate, primarily
in the polar regions (e.g., LaRue et al. 2011, 2013; Fretwell
et al. 2012; Lynch and LaRue 2014; Stapleton et al. 2014a).
By providing remote access to study sites and eliminating
concerns about human safety and wildlife disturbance,
satellite imagery can yield data on wildlife abundance and

distribution and thus may be integrated into larger scale
monitoring programs.
The polar bear (Ursus maritimus) is one species for which

researchers have examined the feasibility of satellite imagery
as a monitoring tool (Stapleton et al. 2014a). Physical mark–
recapture has been the primary technique used to inventory
polar bear populations in North America for decades (e.g.,
DeMaster et al. 1980, Lunn et al. 1997, Regehr et al. 2007,
Stirling et al. 2011). Despite intensive public interest, the
bear’s cultural importance to northern communities, and its
status as a symbol of climate change (Slocum 2004, O’Neill
et al. 2008), data on abundance, status, and trends are lacking
for many populations (IUCN/PBSG 2014), necessitating
the development of a global monitoring framework
(Vongraven et al. 2012). These gaps in knowledge are the
result of several factors, including the costs and significant
logistical challenges of implementing capture-based popula-
tion studies in remote parts of the Arctic. This reality,
coupled with the recognition that research techniques can
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better integrate cultural values of Arctic residents by reducing
capture and handling (Peacock et al. 2011), has compelled
many jurisdictions to invest significant resources in alterna-
tive inventory methods, including aerial surveys and remote
sensing (Stapleton et al. 2014b).
The first test of the feasibility of satellite imagery as a

monitoring method for polar bears was performed by
Stapleton et al. (2014a) on small islands in northern Foxe
Basin, Nunavut, Canada, during the ice-free season in the
late summer of 2012. This work indicated that polar bears
can be reliably identified and distinguished from similarly
sized objects (e.g., rocks) in snow-free sites with minimal
topographic relief by using multiple VHR panchromatic (i.e.,
black and white) images (Stapleton et al. 2014a). An estimate
of abundance derived from satellite imagery counts was
highly consistent with an estimate based on established aerial
survey techniques. The major drawback to the technique,
however, was the amount of time it took to manually review
images (100 hr to review approx. 1,100 km2). This alone
could preclude large-scale application of the technique; so,
though VHR imagery has demonstrated promise for remote-
monitoring of polar bears, there is still a need for expediting
the process.
In addition, technical analyses of imagery can be hampered

by a suite of environmental factors, such as shadows because
of low sun angles, extensive rubble, cloud cover, patchy snow,
and small ice floes washed ashore. These factors may inhibit
or altogether preclude reliable detection at sites with
moderate to high topographic relief or when imagery is
collected at an inopportune time (M. LaRue and S.
Stapleton, unpublished data). Obtaining suitable imagery
from a broad geographic area during a narrow temporal
window may not always be logistically feasible (e.g., clouds
can prevent successful image collection for extended periods).
Collection of large volumes of imagery also may prove cost-
prohibitive depending on collection factors such as use of
panchromatic versus multispectral imagery, or spatial and
spectral resolution.
In this study, we evaluated opportunities for expanding

large-scale applications of satellite imagery. To accomplish
this objective, we re-examined polar bear locations identified
in Stapleton et al. (2014a) and the associated satellite
imagery. We attempted to expedite image review by
automating detection of polar bears via open-source plat-
forms and traditional remote-sensing methods (i.e., classifi-
cation with spectral reflectances and image differencing).We
conducted resampling simulations of these location data to
evaluate whether sampling significantly smaller proportions
of a site could yield reliable estimates of density and
abundance, thereby reducing logistical challenges and
resources required for collecting and reviewing imagery.

STUDY AREA

The Foxe Basin polar bear population, located in Nunavut
and Quebec, Canada, covers approximately 1.1 million km2.
Initial field work described in Stapleton et al. (2014b) was
conducted on Rowley Island (approx. 1,000 km2, located at
698N, 788W) in northern Foxe Basin. The island’s snow-free

landscape, minimal topographic relief, and high concen-
trations of bears provided an ideal setting for evaluating
and developing remote-sensing methods (Stapleton et al.
2014a).

METHODS

Automating Detection
Our first goal was to explore multiple options for automating
—and thus expediting—image review and detection of polar
bears using VHR images. We examined 2 primary methods
to determine the feasibility of automation: 1) analysis of, and
reclassification with, percent reflectances; and 2) image
differencing or change detection. In this attempt at
automation, we intentionally used software with which
most researchers are familiar or have access (ArcGIS 10.2;
Esri, Redlands, CA). Although we recognize the power and
utility of remote-sensing programs such as ENVI (Envivio,
Inc., San Francisco, CA) or ERDAS (Hexagon Geospatial,
Norcross, GA), our intention was to build an easily
reproducible method for use by wildlife biologists and
managers, and not necessarily for use by experts in remote
sensing.
Percent reflectances.—We explored the idea of using the

reflectance values of polar bears on imagery to automate
detection. Reflectance values represent the amount of light
returning from an object to the satellite sensor (Martonchik
et al. 2000). Objects on the landscape have different
reflectance values (e.g., bare ground has a lower reflectance
value than ice or snow), and we hypothesized that although
polar bears and nontarget objects on the landscape such as
rocks, foam, and remnant ice floes are very similar in
coloration, polar bears would have a lower reflectance value
than these nontargets on panchromatic imagery. We did not
use multispectral imagery because of resolution constraints
(Fig. 1; see Discussion).We loaded images into ArcGIS 10.2
and extracted the reflectance values from pixel clusters of a
sample of presumed bears (n¼ 90) identified in Stapleton
et al. (2014a) as well as samples of nontarget objects (n¼ 67;
see Stapleton et al. 2014a for discussion on ground validation
to ensure that our manual review and differentiation of items
on the landscape was accurate). We calculated average
reflectance values and standard deviations for presumed bears
and nontargets. We used the polar bear mean reflectance
value (�2 SDs) to reclassify image mosaics. This process
enabled us to separate a “polar bear” class from the remaining
landscape features of Rowley Island. We then converted the
reclassified raster image to a vector format, extracted and
calculated areas of “polar bear” polygons, and selected “polar
bear” polygons that were 2.0–4.0m2—this is the area taken
up by a subadult or adult polar bear (Stapleton et al. 2014a).
We overlaid the resultant polygons on Rowley Island and
determined the number of presumed polar bears that were
covered by the reflectance-based polygons.
Image differencing.—Image differencing, also known as

change detection, identifies differences between remotely
sensed images collected at different times (Singh 1989, Lu
et al. 2004) and is commonly used for determining
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environmental change (e.g., land use–land-cover change
[Gautam and Chennaiah 1985, Weng 2002]; deforestation
[Moran et al. 1994, Hudak andWessman 2000, Alves 2002];
detecting fire [Wessman et al. 1997, Cuomo et al. 2001]; and
monitoring drought, floods [Jacobberger-Jellison 1994, Liu
et al. 2002], and marine environments [Michalek et al.
1993]). Previous work by Stapleton et al. (2014a) used a
manual form of image differencing to identify polar bears:
they were the small, white objects present on the image of
interest (i.e., target image) but not on the comparative image
(i.e., reference image). We hypothesized that on the
relatively barren landscapes of the Arctic, automated image
differencing could provide an effective means of reviewing
imagery collected during the ice-free season.
To evaluate automated image differencing, we used target

and reference satellite imagery from Rowley Island
(Stapleton et al. 2014a) and subtracted the reference images
from target images using Map Algebra within ArcGIS 10.2.
The resulting raster calculation highlighted pixels that
were present on one image and absent on the other (where
the images overlap). We then overlaid the locations of
presumed polar bears (Stapleton et al. 2014a) to calculate
the number of bears that were identified as being
“different”—present on the target images but absent on
the reference images.

Evaluating Sampling Requirements
Reducing the sampling intensity—and thus reducing the
costs needed to procure imagery and the manpower required

to process and review it—also could expand applications for
satellite imagery on larger geographic scales. We returned to
the Rowley Island data set and overlaid a series of square
grids on the island, with cell sizes ranging from 2� 2 km to
6� 6 km (Fig. 2). Given the high detection rate of bears on
the island (Stapleton et al. 2014b), we assumed that the
observed distribution of bears on the landscape was a
reasonable approximation of their true distribution. We
extracted counts of independent bears per cell for each grid.
These data were counts; therefore, we examined spatial
distribution by testing whether they followed a Poisson
distribution (evaluated by variance-to-mean ratios, where a
ratio roughly equal to 1 suggests that data follow a Poisson
distribution; Horne and Schneider 1995). Because Rowley
Island comprised a finite population and we were primarily
interested in understanding how the methods (i.e., variable
grid-cell sizes and sampling intensities) would perform in a
real world scenario, we then resampled our data without
replacement, sampling from 20% to 90% of the total grid
cells per iteration in 10% increments (1,000 iterations/
incremental increase). For each iteration, we summed the
count data and geographic area from selected grid cells,
calculated density from these metrics, and extrapolated by
multiplying this density by the island’s total geographic area
to estimate abundance. We calculated coefficients of
variation from simulation results to quantify variability in
abundance estimates by percentage of the island sampled and
by grid cell size. We hypothesized that because polar bear
distribution on Rowley Island appeared nonrandom upon
visual inspection, smaller grid-cell sizes would facilitate
obtaining reliable estimates of density and abundance when
less of the island was sampled than would be facilitated by
larger grid-cell sizes. For brevity and to illustrate the
spectrum of resampling scenarios that we evaluated, we focus
the presentation of resampling results on the 2� 2-km,
4� 4-km, and 6� 6-km grid-cell sizes.

RESULTS

Automating Detection
Percent reflectance.—Reflectance values of polar bears

overlapped with nontarget objects: we estimated mean
reflectance of presumed polar bears as 0.33 (SD¼ 0.07) and
mean reflectance of nontarget objects as 0.46 (SD¼ 0.10;
Fig. 3). Approximately 98% of polar bear pixels had
reflectance values from 0.20 to 0.50; 40% of nontarget
samples were 0.50 to 0.60, although reflectance values of
nontargets were more variable than values of polar bears.
This method correctly identified all known polar bear
locations, but it also identified thousands of false-positive
“polar bear” polygons (i.e., polygons that represented pixels
with reflectance between 0.20 and 0.50 and total areas from
2m2 to 4m2). Reflectance, in this case, will not expedite the
process of reviewing imagery to identify polar bears.
Image differencing.—Automated image differencing cor-

rectly indicated that the vast majority of Rowley Island did
not change between target and reference images (e.g., rocks
that could be mistaken for polar bears were rarely identified

Figure 1. Example of polar bears onpanchromatic imagery (top image; 0.6-m
resolution) and multispectral imagery (bottom image 2.4m resolution).
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as different by the calculated raster). This finding was
expected because the 2 images were taken during the same
time of year and, across most of Rowley Island, during the
same year (approx. 5-day to 3-week intervals between
collections). About 87% of presumed polar bears were easily
identifiable with automated image differencing, meaning
they were displayed as red pixels (indicating a difference
between images) among a landscape of yellow (indicating no
difference between images). However, overall reflectance
values of the reference imagery from northeastern Rowley
Island were high because of different collection parameters
from the satellite platform (e.g., off-nadir angle, cloud cover,
etc.). Thus, the difference calculation between 2 particular
image mosaics resulted in much of the area being incorrectly
classified as different because of the fact that the images were
taken on different dates such that the satellite parameters
were different as well. In other words, the known polar bears
in that area were not readily identifiably different from the
surrounding landscape. However, this method did expedite

the process of reviewing imagery in general because the
observer could focus on areas identified as being different
rather than manually toggling between the target image and
the reference image across the entire site.

Evaluating Sampling Requirements
Count data from grid cells varied by size (Fig. 4) and
approximated a Poisson distribution (variance-to-mean
ratios: 2� 2 km: 1.21; 3� 3 km: 1.35; 2� 4 km: 1.27;
4� 4 km: 1.32; 5� 5 km: 1.74; 6� 6 km: 1.70). However,
there was modest overdispersion across all cell sizes (i.e.,
variance-to-mean ratios >1), suggesting some clumping in
spatial distribution (see also Fig. 2). Estimates of abundance
from resampling simulations were highly variable when small
percentages of the site were sampled, but greater sampling
intensities yielded results that more consistently reflected
true abundance (e.g., sampling >50% of study site yielded
CVs <15%; Fig. 5; Table 1). Overall, we documented
reductions in coefficients of variation of only 18–27% with

Figure 2. Grids (3� 3 km and 6� 6 km) overlaid on Rowley Island in northern Foxe Basin, Nunavut, Canada. Polar bear locations were identified with
satellite imagery, which was collected during September, 2012 (Stapleton et al. 2014b). The Foxe Basin polar bear population is outlined in black in the inset,
with the Rowley Island region shaded blue.
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the smallest grid-cell sizes (Table 1), suggesting that cell size
may be a relatively unimportant consideration for larger
sampling schemes.

DISCUSSION

Automating Detection
Proof-of-concept papers assessing high-resolution satellite
imagery as a resource to detect and monitor wildlife are
accumulating (LaRue et al. 2011, Fretwell et al. 2012, Lynch
and LaRue 2014; McMahon et al. 2014, Yang et al. 2015),
yet automatic detection is still at its infancy. For polar bears,
automated detection is necessary to expedite image review
and facilitate large-scale applications. Here, we present an
original design of a semiautomated system for detecting and
estimating abundance of large-bodied polar species.
We anticipated that conducting such supervised classifica-

tion using percent reflectances would be the most effective
means to automate detection of polar bears, but this was not
feasible for several reasons. Primarily, the mean reflectance
values of polar bear pixels were not different enough from

other objects on the landscape to allow our computer
algorithm (within ArcGIS) to isolate only pixels of polar
bears. As such, many of the resulting “polar bear polygons”
encompassed random areas on the landscape. Although
known polar bear locations were included in polygons, this
process also generated thousands of false positives and did
not expedite the search process. This finding suggests that
there is too broad a continuum of reflectance values for both
polar bears and their surrounding landscape to definitively
distinguish them with reflectance values derived from
panchromatic imagery alone.
We did not attempt to use pansharpened (i.e., higher

resolution image created by merging the high-resolution
panchromatic image with the lower resolution multispectral
image), multispectral imagery to address the reflectance
problem because the resolution of our multispectral images
was approximately 2m; pansharpening would introduce the
very spectral mixing we would have needed to avoid in order
to reliably identify only polar bears with their spectral
information. With the advent of the WV-03 and WV-04
satellite platforms (the former was launched by Digital-
Globe, Inc., Longmount, CO in Aug 2014), increased
resolution (approx. 0.30 cm pixel size for panchromatic
imagery) will be publicly available and may allow for such
pansharpening and analyses. However, the current status of
image spatial and spectral resolutions (approx. 0.5–0.6-m
panchromatic; approx. 2-m multispectral, up to 8 bands)
does not permit identification of polar bears via reflectance
values or spectral signature.
We found that the most feasible method for automating

detection of polar bears on Rowley Island (and presumably
for other areas and other large animals) was image
differencing, in which the values of the reference image
are subtracted from values of the target image to determine
differences between the two. Image differencing has been
used to identify and estimate populations of horses (Equus
caballus) in the American West via use of aerial photographs
(Terletzky and Ramsey 2014), although historically, this
process has been used for detecting broader environmental
changes (e.g., phenologies: Rignot and Way [1994],
Verbesselt et al. [2010], wetlands: Munyati [2000], Dronova

Figure 3. Frequency of samples from WV-02 image acquired in August, 2012 of polar bear pixels and nontarget object pixels on y-axis versus the percent
reflectance of those samples on the x-axis. Most samples of polar bear pixels ranged between 30% and 50%, whereas most non-target pixel ranged between 40%
and 70%.

Figure 4. Number of independent bears per grid cell (2� 2 km, 4� 4 km,
and 6� 6 km) on Rowley Island, Nunavut, Canada. Polar bears were
detected with very high resolution satellite imagery collected during
September, 2012 (Stapleton et al. 2014b).
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et al. [2011], forests: Remmel and Perera [2001], Descl�ee
et al. [2006], Panigrahy et al. [2010], and the Arctic tundra:
Jano et al. [1998], Stow et al. [2004]). Here, on relatively flat
terrain, the differencing of 2 images shot during the same
time of year correctly flagged very little change across much
of the landscape (with the exception of the northeastern

portion, where differences in collection parameters resulted
in substantial differences).
The technique proved effective in capturing most known

polar bear locations while reducing the total search area by
highlighting pixel clusters for subsequent review. Using
VHR satellite imagery to monitor polar bears, therefore,
necessitates 2 overlapping images shot during the same time
of year; images taken at intervals close together in time are
better (Terletzky and Ramsey 2014). Although ice and snow
patches were insignificant issues with previous work on
Rowley Island, they may pose significant challenges
elsewhere and could preclude reliable detection. Differences
in snow patches between images collected just a few days to a
week apart are likely minimal, however. Using imagery
collected in close temporal proximity might improve the
capacity of the difference raster to select only polar bears (i.e.,
fewer nontargets), thereby extending potential applications
to regions or time periods with patchy snow cover and
onshore ice floes. Depending on the frequency of image
acquisition by satellite vendors, overlapping imagery may be
missing for many locations. However, as high-resolution
satellite imagery becomes more readily used for ecological
and conservation research purposes, the availability of
overlapping images will likely increase.
Because the ArcGIS satellite-image differencing process

only moderately expedites detection and enumeration of
polar bears, we recognize that future improvements may be
made with more powerful remote-sensing programs. For
example, ENVI, ERDAS, andDefiniens (Carlsbad, CA; i.e.,
eCognition platform) are commonly used in remote sensing
(Liu et al. 2002, Dronova et al. 2011) and have more capacity
to intricately analyze and parse images via object-based
image analysis. Though we had originally intended to find a
method that could be easily replicated by wildlife biologists,
it is possible that solutions could be found using these tools.
Indeed, such methods were recently used to automatically
detect large animals (e.g., wildebeest [Connochaetes sp.]) in
the savannahs of Kenya (Yang et al. 2015). There is a trade-
off between time consumed conducting research via ArcGIS
and the steep learning curve necessary to use complex
remote-sensing programs, the latter of which wildlife
biologists and managers likely do not have time to learn.
Thus, for the purposes of expediting detection and
abundance estimation of polar bears across large expanses,
we advocate using image differencing in the more readily
available ArcGIS. As spatial and spectral resolution advances

Figure 5. Distribution of abundances of polar bears estimated by resampling
grid-cell count data and extrapolating densities. Colors indicate percentage
of cells that were sampled per iteration. (a) 2� 2-km grid cells; (b) 4� 4-km
grid cells; (c) 6� 6-km grid cells.

Table 1. Coefficients of variation (%) estimated from resampling
simulations of polar bear distributional data. N¼ 1,000 iterations/plot
size and site percentage combination.

Percentage of site sampled per iteration

Plot size (km) 20 30 40 50 60 70 80 90

2� 2 23.5 18.2 15.2 11.6 9.5 7.3 5.9 3.8
2� 4 23.9 18.8 14.7 11.9 9.3 8.2 6.1 3.9
3� 3 25.4 19.7 15.0 12.6 10.4 8.4 6.3 4.2
4� 4 26.0 18.8 15.0 12.4 10.7 8.0 6.2 4.2
5� 5 28.8 22.0 17.4 14.8 12.0 9.7 7.2 4.8
6� 6 31.8 22.4 17.9 14.0 11.7 10.0 6.8 4.7
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within VHR satellite platforms, we suspect that methods
outlined here may become more desirable.

Evaluating Sampling Requirements
Resampling spatial data from Rowley Island provides some
guidance about the sampling intensity necessary to achieve a
result that reflects true density and abundance. For a one-
time survey, our results suggest that reduced spatial coverage
(approx. 20–40%) is likely to yield an inaccurate result,
regardless of the size of the sampling plots. We suggest that
sampling 50% of the site may represent a reasonable
compromise between costs associated with imagery (i.e.,
procurement and processing) and reliability of results (e.g.,
CV <15%), but such judgments are at the discretion of
individual managers and jurisdictions.
In our study, although different sizes of sampling plots (i.e.,

grid cells) yielded significant differences in count data, plot
size did not impact the reliability of abundance estimation.
This finding is important for future applications of satellite
imagery. The use of imagery requires direct purchase of the
images as well as investing in the manpower to review them,
either manually or via a semiautomated process. The time
required for image processing and review depends on the
total sampling area, but not actual plot sizes. However, plot
size is an important consideration for procurement of
imagery: larger individual cells more closely approach the
minimum size (and thus cost) requirements for satellite
imagery, potentially reducing costs of a prospective
monitoring program.
We used data from Rowley Island as a proxy for polar bear

distributions that may be encountered elsewhere in order to
extend our inference, but we are uncertain whether these data
effectively approximate distributions at larger spatial scales.
We are unlikely to observe such high densities of bears in
most locations, and significantly different patterns of
distribution may impact our findings. However, we
hypothesize that using larger plot sizes in lower density
regions may yield results similar to our Rowley Island count
data (i.e., approx. Poisson distribution), and we note the
similarity of resampling results here regardless of plot sizes.
Stratification of sampling by known or presumed density
gradients (e.g., proximity to the coastline; Stapleton et al.
2014b) is also an important consideration for applications at
larger spatial scales.
Very high resolution satellite imagery is among the new

tools available to estimate the abundance of large mammals,
but more research is needed to understand how this tool can
best be applied for studying and managing wildlife. As
technologies improve, VHR satellite imagery likely will
become more widely integrated in programs for monitoring
megafauna, given the safe and cost-effective access to remote
sites that it affords researchers.

ACKNOWLEDGMENTS

We thank World Wildlife Fund-Canada, the U.S. Geologi-
cal Survey Alaska Science Center, and the Government of
Nunavut for funding this project. S. Stapleton received
additional support from the Greenland Institute of Natural

Resources and Environment Canada.We thank the associate
editor and two anonymous reviewers for their comments
and for providing insight on previous versions of this
manuscript. Many thanks go to B. Thomassie at Digital-
Globe, Inc., for coordinating collection and delivery of
satellite imagery. We are also grateful to the community of
Igloolik and for its Hunters and Trappers Organization for
their interest and support to our project. Logistical support
for this project was provided by the University of Minnesota,
the Polar Geospatial Center, and the Government of
Nunavut. Any use of trade names is for descriptive purposes
only and does not constitute endorsement by the U.S.
government.

LITERATURE CITED
Alves, D. S. 2002. Space-time dynamics of deforestation in Brazilian
Amazonia. International Journal of Remote Sensing 23:2903–2908.

Cuomo, V., R. Lasaponara, and V. Tramutoli. 2001. Evaluation of a new
satellite-based method for forest fire detection. International Journal of
Remote Sensing 22:1799–1826.

DeMaster, D. P., M. C. S. Kingsley, and I. Stirling. 1980. A multiple mark
and recapture estimate applied to polar bears. Canadian Journal of Zoology
58:633–638.

Descl�ee, B., P. Bogaert, and P. Defourney. 2006. Forest change detection by
statistical object-based method. Remote Sensing of Environment
102:1–11.

Dronova, I., P. Gong, and L.Wang. 2011. Object-based analysis and change
detection of major wetland cover types and their classification uncertainty
during the low water period at Poyang Lake, China. Remote Sensing of
Environment 115:3220–3236.

Fretwell, P. T., M. A. LaRue, G. L. Kooyman, B.Wienecke, C. Porter, A. J.
Fox, A. H. Fleming, N. Ratcliffe, P. J. Morin, and P. N. Trathan. 2012.
The first global, synoptic survey of a species from space: emperor penguins.
PLoS ONE 7(4):e33751. doi: 10.1371/journal.pone.0033751

Gautam, N. C., and G. C. Chennaiah. 1985. Land-use and land-cover
mapping and change detection in Tripura using satellite Landsat data.
International Journal of Remote Sensing 6:517–528.

Horne, J. K., and D. C. Schneider. 1995. Spatial variance in ecology. Oikos
74:18–26.

Hudak, A. T., and C. A. Wessman. 2000. Deforestation in Mwanza
District, Malawi, from 1981 to 1992, as determined from Landsat MSS
imagery. Applied Geography 20:155–175.

International Union for Conservation of Nature/Polar Bear Specialist
Group [IUCN/PBSG]. 2014. Summary of polar bear population status
per 2014. http://pbsg.npolar.no/en/status/status-table.html. Accessed 10
Sep 2015.

Jacobberger-Jellison, P. A. 1994. Detection of post-drought environmental
conditions in the Tombouctou region. International Journal of Remote
Sensing 15:3183–3197.

Jano, A. P., R. L. Jefferies, and R. F. Rockwell. 1998. The detection of
vegetational change by multitemporal analysis of Landsat data: the effects
of goose foraging. Journal of Ecology 86:93–99.

LaRue,M. A., D. G. Ainley,M. Swanson, P. O. B. Lyver, K. T. Dugger, G.
Ballard, and K. Barton. 2013. Climate change winners: receding ice fields
allow colony expansion and altered metapopulation dynamics among
Ad�elie penguins in the southern Ross Sea. PLoS ONE 8(4):e60568. doi:
10.1371/journal.pone.0060568

LaRue, M. A., J. Rotella, B. Garrott, D. B. Siniff, D. G. Ainley, G. E.
Stauffer, C. Porter, and P. J. Morin. 2011. Satellite imagery can be used to
detect variation in abundance of Weddell seals (Leptonychotes weddellii) in
Erebus Bay, Antarctica. Polar Biology 34:1727–1737.

Liu, Z., F. Huang, L. Li, and E. Wan. 2002. Dynamic monitoring and
damage evaluation of flood in north-west Jilin with remote sensing.
International Journal of Remote Sensing 23:3669–3679.
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