Building community for deaf scientists

BIOMEDICAL WORKFORCE diversity enhances research quality and creativity and broadens the research agenda (1). However, deaf and hard-of-hearing (D/HH) individuals remain strikingly underrepresented among biomedical researchers (2). Since 2002, expert panels have listed barriers and recommended approaches to improve the training of D/HH scientists (3–6). As a result, several pipeline programs have been established, including the Rochester Partnership for Research and Academic Career Training of Deaf Postdoctoral Scholars (deapostdoc.urmc.edu) and the Rochester Bridges to the Doctorate (deafscientists.com) (7).

These are encouraging steps. However, most biomedical employers still lack familiarity with the needs and challenges of D/HH scientists. For example, D/HH scientists need specialized accommodations to facilitate communication between deaf and hearing individuals (8–10), including sign language interpreters trained in biomedical terminology. They have limited access to D/HH peers and role models, and they often experience a profound sense of isolation in the workplace. We need a more comprehensive and aggressive approach to address these issues.

We propose the creation of a new, centralized program (“hub”) that would develop and disseminate best practices for career development and training as well as state-of-the-art accommodations designed for inclusive communication for work with D/HH people. The hub would also train expert sign language interpreters with specialized biomedical knowledge. To create a community among otherwise isolated D/HH trainees, the program would facilitate electronic peer mentoring, professional networking, and access to D/HH role models, as well as communication-accessible courses, conferences, and other educational offerings. This hub would provide guidance and education for other biomedical research institutions, helping them to address challenges and better facilitate the success of D/HH trainees through the implementation of the hub’s programs.

Such a hub would readily fit the paradigm for other new “diversity hubs of innovation,” proposed by Valentine and Collins (1). Thus, an ideal “D/HH hub of innovation” might partner a “hearing” academic health center or university that trains physicians and biomedical scientists with a regionally proximate institution that specializes in deaf education and is home to a community of D/HH scholars. By connecting a critical mass of research, research training, and D/HH individuals, this system would accelerate the inclusion of D/HH people throughout the biomedical research workforce.

Gerry Buckley,* Scott Smith,* James DeCaro, Steve Barnett,* Steve Dewhurst**

*Office of the President, National Technical Institute for the Deaf, Rochester Institute for Technology, Rochester, NY 14623, USA. **National Center for Deaf Health Research, University of Rochester, Rochester, NY 14642, USA. *Dean’s Office, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.

*Corresponding author. Email: stephen_dewhurst@urmc.rochester.edu

Wildlife-snaring crisis in Asian forests

THE RECENT HANOI Conference on Illegal Wildlife Trade (16 to 18 November 2016) has further highlighted the extent to which Southeast Asia’s wildlife is facing
an extinction crisis driven by unsustainable levels of commercial hunting (1). This threat affects species both outside and within protected areas and is driving the extinction of some of the planet’s most distinctive and imperiled mammals, including the saola (Pseudoryx nghetinhensis) and tiger (Panthera tigris), while also decimating populations of many “common” terrestrial mammals (2).

In Southeast Asia, as in many other tropical regions, homemade wire snares are the predominant hunting method. Such snares are cheaply constructed from wire or cable and target animals indiscriminately, killing or maiming any individual that encounters them. Snares generate substantial wasted by-catch, which is often left to rot in the forest (3). Nonfatal injuries from snares jeopardize animal welfare. Snares are completely unselective, resulting in capture of non-target species, females, and young. They particularly affect mammals that cover large ranges, including many Threatened species (as classified by the IUCN) that have vital ecological roles in forests (4).

Hundreds of thousands of snares are removed from Southeast Asia’s protected areas annually (1). Yet law enforcement patrols and dedicated snare removal teams have proved largely ineffective, given the trivial costs of snare placement. In Southern Cardamom National Park, Cambodia, for example, the number of snares removed by law enforcement patrols increased from 14,364 in 2010 to 27,714 in 2015 (5).

Only legislative reform that penalizes the possession of snares, and materials used for their construction, inside protected areas can combat this ongoing wildlife crisis in Asian forests. Without such reforms and their enforcement, the specter of “empty forests” (6) will become even more likely.

Thomas N. E. Gray,* Antony J. Lynam,* Teak Seng,* William F. Laurance,* Barney Long,* Lorraine Scotson,* William J. Ripple

*Wildlife Alliance, Chamcamon, Phnom Penh, Cambodia. 1Wildlife Conservation Society, Center for Global Conservation, Bronx, NY 10460, USA. 2World Wildlife Fund Greater Mekong, Chamcamon, Phnom Penh, Cambodia. 3Centre for Tropical Environmental and Sustainability Science and College of Science and Engineering, James Cook University, Cairns, QLD 4878, Australia. 4Global Wildlife Conservation, Austin, TX 78767, USA. 5Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN 55108, USA. 6Global Trophic Cascades Program, Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA.

*Corresponding author. Email: gray@wildlifealliance.org

REFERENCES
5. T. N. E. Gray et al., Gajah 45, 41 (2016).

10.1126/science.aal4463

ERRATA
Wildlife-snaring crisis in Asian forests
Science 355 (6322), 255-256. [doi: 10.1126/science.aal4463]