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Recovery of  
European fish stocks  
and the Reform of the 
Common Fisheries Policy 

Annex I & II: 

I – Material and Methods 

II – List of fish stocks and model parameters 
 

 

I - Material and Methods following Neubauer et al. 2013 – Science 340, 347-349 

 
Definitions 
We used the following operational definitions of depletion, recovery, and recovered. A stock was 
classified as depleted when its biomass (spawning stock or total biomass) fell below half of its MSY 
reference point, BMSY. We considered a stock to be recovered once its biomass exceeded BMSY. 
Recovery is then the demographic process of population growth between the time of depletion, B < 
0.5BMSY, and the time when the biomass first exceeds BMSY. Note that according to these defini-
tions a stock may be classified as overfished more than once throughout its exploitation history 
and we term each such event a depletion event.  

 
Data 
Our analyses are based upon Version 1.0 of the Ram Legacy Stock Assessment Database  (Ricard 
et al. 2012), with European stock assessments conducted by International Council for the Explora-
tion of the Seas (ICES) updated to assessment available in September 2011. For each stock, we 
obtained time series of estimated biomass B (spawning stock or total biomass, in order of prefer-
ence) and fishing mortality F, as well as the corresponding reference points BMSY and FMSY, the 
biomass and fishing mortality estimated to lead to the maximum sustainable yield (MSY). Only 
time-series with at least 10 years of data were retained for analysis. We used MSY reference points 
directly from the assessments, where available, and estimated them using surplus production 
model fits to stocks’ biomass and catch time series for the remaining stocks. Of the 253 stocks for 
which these data were available, 153 stocks, comprising 85 different species, were depleted at 
some point, and several were depleted multiple times, resulting in a total of 184 depletion events. 

 
Modeling recovery 
Our approach to modeling the recovery process is motivated by the underlying population dynam-
ics of recovering stocks, which can be represented using a stochastic differential equation model 
for stock biomass dynamics:  

 ��� = φ����� + 	���
�																																																															(1) 
 

where �� is the biomass at time �, the function φ�, which represents the deterministic component 
of the biomass dynamics (e.g., survival and reproduction), models the rate of increase of the popu-
lation, and could, for example take the form of an exponential or logistic growth model with varia-
ble fishing mortality (e.g., a Graham-Schaefer surplus production model). 
� is a Wiener process 
with mean 0 and variance coefficient 	. This continuous-time stochastic process is commonly used 
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to model Brownian motion, and here represents the stochasticity of the biomass dynamics. Thus, 
model (1) is a stochastic version of a continuous biomass dynamics models (Lewy & Nielsen 
2003), in which the recovery target is approached at a recovery rate determined by φ�. Use of this 
model directly, however, would necessitate specifying the form of φ� and thus determining a pri-
ori which (and how) covariates influence the biomass dynamics. This is, however, exactly what we 
seek to determine empirically, and imposing a particular model for φ� may therefore bias our 
inference. Rather than specifying a specific model for biomass dynamics, our aim is to estimate 
the importance of covariates that influence these dynamics and the associated stochasticity, and 
therefore determine the time to recovery. Thus, instead of modeling the time-series themselves, 
we can model the time to recovery directly by taking the time to recovery as the response variable.  
Under the assumption that the a stochastic component of the time-series can be reasonably de-
scribed by a Wiener process, the time from depletion to recovery follows an inverse-Gaussian (IG) 
distribution with density 

 

���(�) = �′
	√2�	���/�exp	�− (� − ! �)�

2	�� "																																																								(2) 

 
where c’=-log(�#) is a function of the initial biomass at depletion, �# ,	 !′ is a function of φ� , and 
coefficient 	 is the Wiener process variance (Aalen & Gjessing 2001). Regardless of the precise 
model for the biomass, the parameters c’ and !′ can be interpreted as influencing the ‘distance’ to 
the recovery target and the ‘recovery rate’, respectively. Both parameters are relative to the sto-
chasticity of the biomass dynamics, such that, for instance, the same biomass for highly stochastic 
dynamics will represent a lower distance from the recovery target since a recovery due to a sto-
chastic event is more likely. ���  thus depends on		 through � 	⁄ = � and ! 	⁄ = ! (i.e., there are 
only two free parameters, and we can set 	=1 without loss of generality (Aalen & Gjessing 2001)), 
and we may then investigate the importance of covariates in determining the recovery rate and 
distance from recovery relative to the stochasticity in the time series by placing a regression for-
mulation on each of � and ! (Aalen & Gjessing 2001). This means that regression covariates can in 
theory influence the time to recovery either directly by influencing �′ or	!′	,	or by modifying the 
amount of stochasticity 	.  
The final model for time to recovery for all ) = 1…+ depletion events can be expressed hierarchi-
cally as: �,|!,,. , �,	~	01(!,,.	, �,)!,,. = 2 3, + 4.�, = −log(�#) ∗ exp	(8 Ξ,)4.	~	+(0, ;)

 

 
where, 3, and Ξ, are regression covariates influencing the relative recovery rate and the relative 
distance to recovery, respectively. For the latter, a multiplicative regression formulation assures 
that the distance remains positive, but is decreased by negative effects of covariates. To circum-
vent pseudo-replication in stocks with more than one depletion event, we introduce a random 
effect 4.  for the recovery rate of stock j. The probability <(�) that a stock will take at least a time T 

(e.g., 10 years) to recover is then =(�) = 1 − >��(? ≤ �), where >��  is the inverse Gaussian cumula-
tive distribution function at T integrated over the random effect (see below). 
Importantly, this model form allows for the possibility that some stocks may not recover. Recovery 
will be increasingly unlikely with an increasingly negative recovery rate and increasing distance 
from the recovery target (relative to the stochastic component in the time series). This probability 
can be directly quantified for our model, and can thus be investigated in terms of regression co-
variates (see below).  

 
Survival analysis for stock recoveries 
Models of ‘time-to-recovery’ often involve censored (i.e., incomplete) data. Specifically, data are 
censored for each stock that was already depleted at the beginning of its time series (i.e., year of 
depletion unknown) or was not yet recovered in the final year of its time series (i.e., year of recov-
ery unknown). For such populations, we know the minimum time t of the depletion event, but not 
the full time of recovery ? (which is infinite for populations that never recover). Thus ? > � for 
such depletion events, while ? = � for recovered populations in which the full depletion duration is 
known. These data are most appropriately modeled in a statistical ‘time-to-event’ framework, 
which takes into account their incompleteness(Zens & Peart 2003). 
To estimate parameters in our model, we need to be able to write the likelihood for all non-
censored and censored data. The inverse Gaussian density of time to recovery (2) can be decom-
posed into the probability of recovering in the time interval  � + Δ� with Δ� → 0 given that recovery 
hasn’t taken place up to that point, times the probability that recovery hasn’t taken place up to that 
point. For censored observations, we know only that the depletion event lasted at least time t. We 
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thus only have a partial likelihood for these data points. As above, the probability =��  that a stock 
will take at least a time t to recover is 

 

FEF(�) = 1 −	PEF(T ≤ 	t) = ΦKc − νt
√� N − exp(2�!)ΦK−c − νt

√� N. 
 

The total likelihood is then 

 

O(�) = PFEF(�)Q�����(�)�
,RS

, 
 

where 0 is an indicator taking value 1 for complete and 0 for censored observations. 
To make predictions about the statistical population of stocks, we integrate with respect to the 
random effect, which yields (Aalen & Gjessing 2001) 

 FT(�) = 1 −	PT(T ≤ 	t)
= ΦU c − νt

V��;� + �W
− exp(2�! + 2��;�)ΦU−c − 2ctξ� − νt

V��;� + � W													(2) 

	
where the U in the subscript indicates that this quantity is now unconditional, that is, not condi-
tional on the random effect of a particular stock. 

 
Drivers of recovery 
We tested a suite of covariates hypothesized to influence recovery. Most obvious is the fishing 
mortality, F, relative to FMSY during the recovery period; here we used the mean F/FMSY during 
recovery as a potential predictor of the recovery rate. The minimum biomass reached during the 
depletion may also have an important effect on recovery times, both via density dependent effects 
on the recovery rate as well as by providing additional information about the distance from the 
recovery target. High sustained fishing mortality can lead to a number of (potentially hereditary) 
changes in the demography and physiology of exploited stocks that may be directly related to 
fishing pressure and may limit or enhance the ability of a stock to recover. To account for potential 
adaptive and evolutionary effects of high and sustained fishing mortality we included the historic 
fishing intensity as well as the exploitation time as covariates for both the recovery rate and the 
relative distance.  We defined exploitation time as the number of years from the development year, 
taken as the time from which catches first exceed 20% of the maximum catch, or the first record in 
the assessment database if the former was not available, until the year of depletion, and historic 
fishing intensity as the mean F/FMSY over this period. We hypothesized stocks with long exploita-
tion histories prior to depletion would be more strongly affected by historic fishing intensity, and 
thus included first order interaction terms of historic fishing intensity with exploitation time 
(termed ‘exploitation history’). All covariates were centered, such that the main effects describe 
influences at the mean covariate values, and the interaction term describes deviations from mean 
effects.  
We also included the intrinsic rate of increase, r, as a covariate to control for ‘fast’ versus ‘slow’ life 
histories in determining the recovery rate. The intrinsic rate of increase was estimated for each of 
these stocks in a taxonomically hierarchical meta-analysis of surplus production model r esti-
mates. We included a binary habitat category for pelagic and demersal species as a predictor of 
both the recovery rate and relative distance, since the demersal species are often caught in multi-
species fishery, where continued bycatch mortality may prolong recoveries. To make effects sizes 
comparable among continuous and categorical variables, we divided all covariates by twice their 
standard deviation. Lastly, we included species’ trophic level (from Fishbase (Froese & Pauly 
2009)) in both regressions to account for potentially differential recovery regimes at different 
levels of the food web. 

 
Analysis step specific to prediction of rebuilding time for stocks with characteristics 

of currently depleted stocks under EU legislation. 

 
To make specific inferences regarding a statistical population of stocks with life-history and deple-
tion characteristics resembling those of currently depleted European stocks, we examined model 
predictions, calculating times Y at which a proportion p of 0.50, 0.75 and 0.90 of stocks with these 
characteristics would be recovered with a cumulative posterior recovery probability of 0.75. For 
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this, unconditional recovery times (see above) were predicted using (2), and integrated to margin-
alize over stock characteristics. This was done by numerically integrating and solving  

 

Z Z>([(� ≤ ?) = \|3]^, Ξ]^)	�(3]^, Ξ]^)�Y_
`

 

for Y, such that the outer integral (the cumulative posterior probability) is numerically equal to 
0.75. \ = 0.5, 0.75 and 0.9 are the proportion of stocks, and 3]^, Ξ]^ are covariates for European 
stocks described in Table 1.   
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Annex II – List of Fish stocks and model parameters 

 

Table 1: Stock description, binomial species names and variables used for the recovery analysis. Missing cases 

indicate that this information was not available from the assessments and was put (predicted) in the analysis 

using the posterior predictive distribution for the variable.  
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