通向气候友好的未来
--水泥行业发展之蓝图
如何改变发展中国家水泥排放的趋势

为WWF-拉法基合作项目准备的报告

WWF 总部
瑞士格兰特

Nicolas Muller & Jochen Herrisch
Ecofys 德国公司
德国纽伦堡

+49 911 994358-12
A blueprint for a climate friendly cement industry

Preface

气候变化危机需要紧急方案。本报告对担负全球8%CO₂排放责任的水泥行业提出解决方案。

随着经济的增长和国家的富有，对水泥及混凝土等建材的需求在快速增长。这在新经济体国家表现尤为突出。全球水泥行业面临降碳强度度却维持业务增长的困境，从生产工艺到燃料使用及产品的应用。

科学家们告诉我们全球到2050年要比1990年至少减少80%的温室气体排放。为实现该目标，WWF坚持发达国家要采用决定性的行动，在2020年实现比1990年减少25-40%的温室气体排放，并同时向发展中国家的高碳和高能耗行业提供支持和资金以实现更进一步的减排。

本报告提供了一整套解决方案以推动水泥公司改变CO₂排放的增长趋势，并展示水泥行业如何贡献于改善我们面前的重要任务。报告概述了到2050年全球水泥产量翻一番而绝对CO₂排放却比2007年减少约75%的情景，与常规情景相比，减排方案相当令人惊讶：与2050年的“技术停滞方案”相比，可以避免90%的CO₂排放。

WWF认为，工业化国家和新经济体国家的水泥公司，都需要采取措施减少今天的碳足迹。本报告提出的解决方案可以帮助水泥行业向正确的方向行动。设定目标并采取行动，以实现温室气体的深度减排。

很明显这些行动需要相关政策框架的支持，而这些政策要以限制发达国家的总体排放量为基准。同时，该框架要确保发展中国家，尤其是新经济体，要采取与常规发展模式不同的道路。

为了实现这一目标，发达国家要提供足够的资金支持和技术支持。水泥行业的政策框架特别要包括以下内容：

• 尽快落实政策及法规，以保证任何新建或改造的水泥厂只使用最先进的技术；
• 开展技术支持项目，以推动行业达到全球设定的行业标准。该技术支持项目应从附件1国家接受资金，支持非附件1国家的活动；
• 制定政策以支持跨行业减排行动，因为建造业等处于市场份额的产业在使用高能效水泥和合理使用水泥方面发挥重要作用。这种跨行业的减排行动到目前为止还没有得到有效推动；
• 制定政策以确保生物质能源的可持续生产，帮助水泥行业减少对化石燃料的依赖；
• 为金融服务公司制定标准化的项目筛选标准和流程，以帮助水泥行业和水泥公司解决及综合考虑气候变化的风险。

虽然本报告重点提供了中国水泥行业的解决方案，但很明显这些方案同样适用于其它国家，包括工业化国家。工业化国家水泥生产的碳强度，尤其在北美，有时比新经济体国家还要高。WWF敦促全球的水泥生产商都制定认真的行动方案和投资计划，为与所在行业开发下一个低碳发展的商业模式。

WWF在此感谢Ecofys的报告编写者，在中国和其他地方为本报告提供支持的技术专家和审阅专家。WWF也想借此机会感谢拉法基在中国和中国的员工，他们为本报的编写也贡献了其经验和时间。

Kim Carstensen
WWF中国
全球气候行动总监

Oliver Rapf
WWF中国
企业气候变化合作项目主任

欧述梦
WWF北京代表处
首席代表

A blueprint for a climate friendly cement industry
以下人员对我们在中国开展调研期和调研后审阅提供了有力支持，在此一并感谢：

中国建筑材料科学研究总院副院长，隋同波
中国水泥协会秘书长，孔祥忠
中国国家发展改革委员会工业司稀土建材处，刘明
中国建筑材料科学研究总院外事办主任，谭莉
国家水泥信息网络中国建筑材料工业技术情报研究所副所长，崔源声
中国社会科学研究院可持续发展战略研究中心高级研究员，陈迎
能源基金会中国可持续能源项目官员，张瑞英
能源研究所研究员，胡秀莲
中国建筑材料科学研究总院，汪渊
水泥科学及新型建筑材料研究所，崔琪
重庆市建设委建材管理办公室，彭志辉
重庆市经济委员会，何红
拉法基中国高级副总裁，周海红
拉法基资源回收经理，Frederic Vallat
水泥数字高级顾问，刘作义

此外，我们还要感谢所有对本报告提供修改意见的专家：Lynn Price（劳伦斯伯克利实验室），Niklaus Kohler（Karlsruhe大学），Elmar Bollin（Offenburg应用科学大学），汪渊（中国建筑材料科学研究总院），以及陈迎（中国社科院）。

本报告是Nicolas Muller在德国Offenburg应用科学大学所做的硕士论文，得到导师Elmar Bollin教授（Offenburg应用科学大学）和Jochen Harnisch博士（Ecofys德国公司）的指导。
1. 概要

世界主要经济体的经济持续增长带动了对建筑材料的需求。到 2030 年，全球水泥产量预期将达到 1990 年的三倍。宏观因素，即 50 亿吨[1]。这将显著影响人为温室气体 (GHG) 排放量的总体水平。因为每生产一吨水泥需排放约 0.89 吨二氧化碳[2]。2030 年之前，全球水泥业的二氧化碳排放量就极有可能超过欧盟的总体排放量。本报告旨在确定这一过程的推动因素，提出减少排放量的方法。

1.1 发展中国家的水泥产量急剧攀升

图 1.1a 显示 1990 年之后全球水泥产量迅速增长。其中，中国水泥产量的增速尤为迅猛，占据很大比例。该图还显示了水泥产量在未来十年期内的预期增长量。未来十年内，将新建大量水泥厂，其中大多数都为发展中国家。这些工厂的寿命可能超过 40 年。未来，限制碳排放将逐渐成为主流，因此水泥厂的盈利能力将与其二氧化碳排放量直接相关。而通过改善技术和经营，可有效降低现有工厂的排放量。此外，加速关闭低效率的老旧工厂也可以为减排做出突出贡献。

1.2 与水泥有关的排放和未来气候变化的应对措施

世界各国已就环境问题达成共识，认识到气候变化问题的严重性，一致认为应在全球范围内采取行动。各国计划在未来 10 年内扭转全球温室气体排放量的增长趋势，到 2050 年将排放量降至 1990 年的 50% 以下，力争使温室气体排放浓度稳定在 450 ppm。在 21 世纪内将全球变暖的幅度控制在 2°C 以内[3]。上述目标得到了越来越多的认同，并在国际上获得了政策层面的支持。在联合国的协调下，有望通过协商实现上述目标。

2006 年，水泥生产导致的排放约占全球人为二氧化碳排放总量的 8%[4]，约占全球人为温室气体排放总量的 6%。尽管效率大幅提升，但与水泥有关的排放自 1990 年至 2050 年期间预计将增长 260%（图 1.1b）。因此，如何将传统的水泥生产方式转变为可持续发展模式，以及如何在短时间内采取必要措施降低水泥行业的排放量，已成为我们亟需面对的重大挑战。
1.3 传统减排措施和先进的减排措施

目前，每生产一吨水泥通常需要排放 0.65 吨到 0.95 吨二氧化碳，具体数字取决于过程效率、所用燃料和水泥产品的具体型号。全球水泥生产规模如此庞大，即使全球平均排放量略微降低，也能对降低二氧化碳排放量产生深远影响。到 2050 年，水泥生产过程中每降低 10% 的二氧化碳排放密度，就能够在排放量约 4 亿吨二氧化碳 [1]，对缓解气候变化做出重大贡献。

通常在生产水泥熟料时，石灰石（CaCO₃）转变为石灰（CaO）的过程所排放的二氧化碳通常占到总排放的 55% 左右。为达到此反应所需的热能（1450°C），燃烧过程会产生大约 40% 的排放量。通过提高能效，可有效降低排放量和燃料成本。使用生物能源替代高碳燃料可显著降低燃烧石灰燃料所产生的二氧化碳。降低水泥厂的耗电量也是减排的方式之一，最多可降低 10% 的总排放量。具体数字取决于当地的发电结构。

此外，也可通过提高水泥和混凝土的使用效率实现减排。仅是大型的水泥制造者也不能显著影响市场对建筑材料的需求量，但它们可以引导建筑行业从业者做出抉择，尤其是在与政府合作方面。与提高能效、降低能耗一样，避免或减少使用混凝土的措施值得充分重视。

使用高强度特种混凝土，或者以更高效的方式使用普通水泥和混凝土产品，都可大幅降低项目所需的材料总量。将建筑物的使用寿命从短短数十年延长至一个世纪以上，也是降低水泥需求和相关排放量的长期有效措施。

此外，使用创新型的低二氧化碳胶凝材料也是一种减排方式。各种先进产品和优化技术带来的二氧化碳降低量不容小视。要实现既定的减排计划，这些产品要在 2050 年之前占据较大的市场份额，还要在各个层面推广产品概念和相关知识，改变建筑行业的相关准则和标准。

下文概述了可有效降低温室气体排放量的各种主要技术措施。

水泥生产

1.3.1 提高窑炉热效率

当今，各国（包括中国）已广泛采用最为有效的解决方案，使用新型窑炉（新型回转窑）等。新型窑炉可采用现有的最佳技术，但在全球范围内，尚有很多工厂的设备远未达到最佳效率；与采用现有最佳技术和实施的工厂相比，两者之间的能耗可相差一倍之多。这些工厂的生产效率可通过设备升级大幅提高，效率低下的时技术也应废弃使用。这些工厂通常是污染大户，水质量也常常不尽人意。要转型为采用良好规范、生产优质产品，这些正是阻力的来源。

1.3.2 加大生物能源所占比重

虽然在巴西，水泥炉窑燃料中将近 40% 是生物能源。但在发展中世界，生物能源的使用仍然很少。有利的热带气候条件会推动生物能源的快速增长，但大部分发展中国家的炉窑燃料中生物能源所占比例还不到 5%。到 2050 年，可持续生物能源在燃料中的比重要达到 40%，这一长期目标虽有挑战性，但是能够实现的。这需要建立一条长期持续的供应链，从森林、生物垃圾或农作物中提取生物燃料并外销。
1.3.3 提高工厂的用电效率
耗电量和用电效率方面的改进大有可为。通过 WHR (余热回收装置) 和高能效设备，可将每吨水泥的耗电量降低至 40 千瓦时以下，使工厂目前的耗电量降低三分之二。对于采用低碳发电方式的国家来说，这具有更为重要的意义。水泥企业可与发展中国家的政府就最大耗电量（千瓦时/吨水泥）达成共识。所有新工厂必须安装 WHR（余热回收装置）。同时，现有工厂也可制定一个用电效率增长率目标。这一举措可通过所有水泥企业自觉达成一致而实现。

1.3.4 开发碳捕集和储存技术 (CCS)
按照减排碳排放的策略和时间限制水泥行业的二氧化碳排放量，是一项困难的任务。收集和储存生产过程中产生的二氧化碳可作为一种降低碳排放的解决方案。到 2050 年，通过此技术可处理水泥行业的大部分二氧化碳排放。到那时，仅 3,000 家水泥厂就可以满足全球 50 亿吨的水泥需求。为了确保到那时能够回收所有工厂的二氧化硫，设计新工厂时应考虑 CCS 升级。使用低碳能源并配有 CCS 的工厂可使碳脱离大气循环，有可能降低大气中的二氧化碳含量。

水泥的使用
1.3.5 提高水泥的使用效率
首先要关注项目整体的性能，而不只是供应一定数量的水泥。在一些案例中，通过采用正确设计和使用高质量混凝土或特种混凝土，混凝土使用量可以降低，有时甚至可以降低 50% 以上。而这需要与客户的精诚合作，还需要提供相关教育、信息和培训，让人们了解水泥供应商能够提供的高级替代品。此外，还需要在水泥的整个生命周期（从生产到使用）内采用正确的科学方法和质量控制措施。

1.3.6 增加添加剂和水泥熟料替代品的使用量
在很多工业化国家和发展中国家，使用普通硅酸盐水泥已成为建筑行业的既定惯例。而使用硅酸盐水泥的传统替代品和高级替代品，可显著降低二氧化碳排放量，减排量从 20% 到 80% 不等（根据具体情况而定）。

到目前为止，使用添加剂和普通硅酸盐水泥 (OPC) 熟料替代品，是降低水泥二氧化碳排放量的最成功方法之一。熟料率值需要长期稳定在较低的 0.75。但这个目标还难以实现，因为添加剂种类的增加速度无法赶上水泥需求的增速。

如果到 2030 年，硅酸盐水泥的新型替代品可占到市场总量的 20%，将使水泥行业的二氧化碳排放量降低 10%。引入硅酸盐水泥的新型替代品总体来说仍是一项极具挑战性的任务，需要持续较长时间。因此最好尽早开始实施，尤其是对于初级发展阶的国家来说。为了实现此目标，可在试点项目中进行示范性应用。在大型项目中，一个客户就会需要大量水泥。因此这类项目最适合引入硅酸盐水泥的新型替代品，之后再向更多的客户推广。强有力的碳融资或其他激励工具可有效推广这些替代品，以使其达到一定的知名度和市场认知度。
1.4 通往低碳水泥业的道路

大多数措施都可以单独实施。表 1.a 概述了文中所述的技术措施，列出了预期的减排结果。

表 1.a 列出了可能的温室气体减排措施和预期的减排结果。本表参照“技术停滞”方案，即假设 2050 年的水泥消耗量为 57 亿吨（2005 年为 2050 年之氧化碳排放系数为 0.89 吨氧化碳/吨水泥，以此计算出 2050 年水泥生产所排放的氧化碳排放总量为 51 亿吨。

<table>
<thead>
<tr>
<th>措施</th>
<th>定量分析（所有数据均为一年的数据）</th>
</tr>
</thead>
<tbody>
<tr>
<td>提高水泥的使用效率，尤其是在建筑中的使用效率。降低混凝土的需求量，使用质量更好、附加值更高的材料。在各类应用中避免使用劣质混凝土。制定高效使用水泥的目标，相当于在 2050 年之前水泥相关的二氧化碳排放量降低 15%。</td>
<td>降低 15% 的消耗量＝水泥使用量减少 8.6 亿吨＝二氧化碳排放量减少 7.5 亿吨剩余水泥产量＝48.4 亿吨剩余二氧化碳排放量＝43.2 亿吨</td>
</tr>
<tr>
<td>进一步增加添加剂和替代品在混合水泥中的使用量，在大型项目中推广硅酸盐水泥的替代品，利用其示范作用提高替代品的市场份额。全球范围内的熟料率从 2005 年的 0.87 降低至 2050 年的 0.75 二氧化碳排放量减少 8.8 亿吨剩余熟料产量＝30.9 亿吨剩余二氧化碳排放量（因生产熟料而产生）＝31.2 亿吨</td>
<td></td>
</tr>
<tr>
<td>提高炉窑热效率：通过现有最佳技术和良好行为规范鼓励减排，并采取行动降低二氧化碳排放量。提高炉窑平均效率，从 2005 年的 4.4 吉焦/吨熟料降低至 2050 年的 3.0 吉焦/吨。</td>
<td>水泥消耗量减少 3.75 亿吨＝二氧化碳排放量减少 3.75 亿吨消耗热量从 13.60 百万兆焦耳降低至 9.27 百万兆焦耳能源需求量降低 4.33 百万兆焦耳</td>
</tr>
<tr>
<td>提高工厂的用电效率，通过 WHR（余热回收装置）和高能效设备提高新水泥厂和现有水泥厂的用电效率。到 2050 年，将所有水泥厂的净耗电量降低至 40 千瓦时/每吨熟料</td>
<td>减排量：减少二氧化碳排放量 1.25 亿吨（换算成煤后计算得出）</td>
</tr>
<tr>
<td>提高生物质能源在燃料中的比重</td>
<td>制定长期目标，即在 2050 年，水泥炉窑所使用的燃料组合中有 45% 是可持续生物燃料。若以化石燃料煤为计算标准，相当于减排二氧化碳 4.1 亿吨每年产生的二氧化碳排放量化石能源：21.2 亿吨（G）发展碳捕获和存储技术（CCS），在 2050 年将二氧化碳排放的收集量提高至较高水平。发展能够实现 CCS 升级的新工厂。到 2050 年，收集 60% 的二氧化碳气流＝每年捕获 1.54 吨二氧化碳到 2050 年大气中的净二氧化碳排放量：6 亿吨/年。</td>
</tr>
</tbody>
</table>
1.5 让环保的水泥行业成为现实
为了迅速推进行业发展，本章将从具体措施的实施入手，确保技术措施能够顺利实施。下列列出了一些具体措施，并在结尾处提供了综述（表1.1）。

(1) 为水泥业制定全球行业标准
国家标准，地区或国际组织可通过政策或市场工具，要求水泥厂达到最低能效指标，从而加快全球水泥业采用现有最佳技术和提高能效的步伐。无论是国家还是公司都可以为新建的水泥厂设立最低能效标准。未来的气候协议中也可以包含设定最低行业标准这一目标。此外，还可利用碳排放额度作为激励手段，促使水泥厂采用先进技术的最佳行为规范，提高环保意识。

在当前的国际框架下，缺乏明确的手段以加速淘汰落后行为和老旧技术，其中尤为缺乏鼓励关闭老旧工厂的经济刺激手段。在政策建议书及其后续审议中，可加入新方法以尽量关闭老旧工厂，从而使水泥行业逐步关闭工厂。政府方面可以降低先进技术的进口税，或对低能效的水泥厂征收惩罚性税收，以此加速治理过程。

(2) 将二氧化碳减排纳入商业模型
业界领先的水泥公司应与建筑学院、土木工程公司和环保团体展开合作，成为降低二氧化碳排放计划的领导者。水泥公司可以从现在开始加强二氧化碳咨询方面的专业技能，为客户提供对气候影响最小的解决方案。

此外，水泥公司还应与建筑协会和建筑学会一起推广强度高且二氧化碳排放低的材料。使用高质量、高附加值的水泥，甚至可以在降低材料使用量的同时提高公司的盈利能力，而且仍能满足对建筑材料的需求。很多国家都已开始逐步减少低强度水泥的产量，通过为各种应用制定最低标准，可使劣质材料逐步退出市场，增加创新型建筑材料的使用量，可以在减排战略中发挥重要作用。

一般来说，这些新的减排计划可通过“政策类清洁能源机制”实施，这一机制更加注重规划或政策而非单个项目的效果。开发、推广和使用这一机制非常重要，可以添加到未来的政策和未来政策的实施中。从总体上来看，各国通过协商确定的有力措施，可大大加速水泥材料替代品（如纤维增强混凝土或贝利特水泥）的市场推广。因此，按照碳排放额度予以奖励的政策可能是推广这些材料的有效手段。

(3) 改进使用替代材料的体系框架
替代材料作为黏合剂以及与水泥混用，已经大幅减少二氧化碳的排放量。在某些地区，替代材料在水泥混合物中的比例可增加到35%。若发展中国家计划在90年代至2010年间，建设大量火电厂，这些发电厂能够生产出大量低含碳的蒸汽，是非常重要的。在混合水泥中使用替代材料所减少的二氧化碳排放量，与将电效率提高数个百分点的效果相同。同时，也可以通过税收和优惠手段为开采煤炭的碳税制定标准。此外，还应评估碳税对发电厂能源平衡和经济的潜在积极影响。因此，燃煤电厂的经营者和技术供应商应及早参与其中。

![图1.2 2050年各种减排手段对水泥相关排放的影响](image)
4. 为增加生物质能源的比重制定目标

水泥公司应当为利用生物质能源设立长期的可持续发展目标。各水泥公司应与政府和环保团体展开合作，共同制定持续利用生物质能源的计划。这样到2050年，全球燃料组合中生物质能源的平均使用率可能达到50%。这一数字与当前的技术极限极为接近。但是生物能源使用的增长要以所供应的为可持续生物能源为前提。

5. 更新水泥标准

为了获取更大的市场份额，混合水泥或水泥材料的高级替代品都需要制定产品标准，以此标准评估各项性能指标（如强度、凝结时间、每吨材料的二氧化碳排放量），而不是根据化学成分（与普通硅酸盐水泥对比）进行评判。水泥公司、水泥协会、政府和国内外标准化组织均应参与到制定标准的过程中。

6. 为建筑行业建立新的国际政策手段

水泥、混凝土、最终产品或建筑项目生命周期中的所有环节，都应当纳入二氧化碳减排的考虑范畴。这就需要在计划、国家政策或碳市场方面制定出适当的手段。在理想情况下，可以找到出多项此类手段，然后通过定量分析和核对，确定其是否是有效的减排方式以及国家政策或碳市场是否支持。

在大型项目的竞标中可纳入二氧化碳这一因素，以此作为推动手段。此外，还可以制定政策减少建造建筑物外立面所使用的二氧化碳。

国际间的讨论应考虑将上述举措纳入京都议定书。

7. 在国家层面确立基于市场的手段

针对水泥业的化石燃料消耗问题使用财政手段并非难事。采用全球“限额交易”系统，可限制水泥业的排放许可。对于降低碳排放密度来说，这是一种经济刺激手段。这种“限额交易”系统有多种实施方式。

针对燃料使用或排放制定碳价格，可激励大多数高效率工厂完全发挥出自身的产能，同时还能对低效率的工厂起到限制作用。最终，这将激励工厂尽可能多地回收和利用生物燃料。如设计得当，这些手段可以鼓励新建工厂采用更高效的技术，同时加速低效率设备的淘汰。
[8] 深入研究先进技术
水泥业在2030年至2050年期间的温室气体排放量将占到各行业总量的10%。然而，与其他排放二氧化碳的行业相比，水泥行业当前对二氧化碳减排措施的研究活动是相对较少的。某些国家已在公司、大学和政府之间形成一些特殊的群落，通力合作，加强研究网络建设，使水泥行业实现长期的低二氧化碳排放。

本报告中的以下几点与水泥业息息相关：

从长远来看，对炉窑温度要求较低的水泥替代品（700-800℃），可尝试通过聚能器利用太阳能加热。

研究先进的联产技术，如水泥厂和电厂的联合生产技术。

研究利用CCS（碳捕获和储存技术）收集二氧化碳废气，避免排放到大气。通过吸热式冷却器利用废热制备氨气，供氨气电弧炉使用，从而增加热效率。反应过程中产生的二氧化碳纯度极高，可通过CCS收集，其他温室气体（如NOx）的含量几乎为零。

[9] 在国际范围内加强能力建设
从多个层次考虑，发展中国家水泥业的减排要求同样能力建设。要想将二氧化碳减排措施付诸实践，就必须传授与过程和产品有关的技术、能力和知识，这就需要开展大量的能力建设活动。但是，具有特殊知识的人可以为水泥公司带来竞争优势，这些人很可能不愿将知识传授给其他公司的人员或要求收取薪酬。

能力建设的核心是在区域层面传播减排措施和支持手段。通过对现有的工厂开展教育培训，并聘请专家、生物能源回收和能效方面的专家，即可实现这一目标。此外，可在各工厂推行最佳行为规范。

引入创新型水泥材料时，尤其需要进行能力建设，以便在多个层面上克服困难。能力建设活动还要解决国家层面或更大范围内的法律框架问题，从而实现大范围减排。为水泥制定新标准可以令混合水泥和水泥替代品的使用更便利。此外，还可以为工厂制定最低能效标准，并采用财政手段。
表 1.b 可以实施的行动：达成减排目标需推行的政策和措施

<table>
<thead>
<tr>
<th>可实施的行动</th>
<th>相关方</th>
<th>时间范围</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 为水泥业制定全球行业标准</td>
<td>水泥公司/非政府组织</td>
<td>短期和中期</td>
</tr>
<tr>
<td>(2) 扩大二氧化碳减排的范围</td>
<td>水泥公司</td>
<td>短期</td>
</tr>
<tr>
<td>(3) 改进框架，提高替代材料的品种和使用量</td>
<td>水泥公司</td>
<td>中期</td>
</tr>
<tr>
<td>(4) 为增加生物能源的比重制定目标</td>
<td>发展中国家</td>
<td>中期和长期</td>
</tr>
<tr>
<td>(5) 更新水泥标准</td>
<td>水泥协会</td>
<td>短期和中期</td>
</tr>
<tr>
<td>(6) 为建筑行业建立新的国际政策手段</td>
<td>水泥公司</td>
<td>长期目标</td>
</tr>
<tr>
<td>(7) 建立国家级市场工具</td>
<td>发展中国家</td>
<td>中期和短期</td>
</tr>
<tr>
<td>(8) 深入研究先进技术</td>
<td>国际机构</td>
<td>长期</td>
</tr>
<tr>
<td>(9) 在国际范围内加强能力建设</td>
<td>国际机构</td>
<td>长期和中期</td>
</tr>
</tbody>
</table>

A blueprint for a climate friendly cement industry
1. A blueprint for a climate friendly cement industry

References

5. WRE 450 排放情况 来源:

6. 根据全球二氧化碳排放量和水泥行业二氧化碳排放量得出此百分比:
 自行计算水泥行业的二氧化碳排放量, 已根据 2006 年的情况进行修正，依据为:

8. 全球二氧化碳排放量的数据来源:
 荷兰环境监测局 MNP. 使用 BP 的能源数据. (BP 2007). *Global CO₂ emissions* 载于 MNP 网站:
 http://www.mnp.nl/mnc/c-0533-001g-mnc-02-nl.xls.html
 http://www.mnp.nl/en/dossiers/Climatechange/moreinfo/Chinanowno1inCO2emissionsUSAinsecondposition.html

这份报告的中文版全文可以从http://www.wwfchina.org/aboutwwf/whatwedo/climate/index.shtml下载

WWF的使命是遏止地球自然环境的恶化，创造人类与自然和谐相处的美好未来。为此我们致力于：

- 保护世界生物多样性；
- 确保可再生自然资源的可持续利用；
- 推动降低污染和减少浪费性消费的行动；

世界自然基金会北京办事处
北京市劳动人民文化宫东门内文华宫 世界自然基金会北京办事处
邮编：100006
总机：65227100
传真：65227300
网址：www.wwfchina.org